Object Oriented Design (OOD)





Introduction


Object Oriented Design (OOD), like other design methodologies, creates a representation of the real world problem domain and maps it into a solution domain, i.e., software. Unlike other methodologies, OOD results in a design that interconnects data items and processing operations in a way that modularises information and processing rather than processing alone.





With OOD, the system designer does not need to map the problem  domain into pre-defined data and control structures present in the implementation language. Instead the designers may create their own abstract data types and functional abstractions and map the real world domain into these programmer created abstractions. This mapping, incidentally may be much more natural because of the virtually unlimited range of abstract data types that can be invented by the designer. Furthermore, software design becomes decoupled from  the representational details of the data items used in the system. These representational details may be changed many times without any fallout effects being introduced in the overall software system.





Design Issues


Generally the following five criteria can be used to judge a design method’s ability to achieve modularity :


Decomposability. It is the facility with which a design method helps the designer to decompose a large problem into sub-problems that are easier to solve. 


Composability. It is the degree to which a design method ensures that program components (modules), once designed and built can be reused to create other systems.


Understandability. It is the ease with which a program component can be understood without reference to other information or other modules.


Continuity. It is the ability to make small changes in a program and have these changes manifest themselves with corresponding changes in just one or a very few modules.


Protection. It is an architectural characteristic that will reduce the propagation of side effects if an error occurs in a given module.





From these criteria, five basic design principles can be derived for modular architectures. These include, 


Linguistic modular units


Few interfaces


Small interfaces


Explicit interfaces


Information hiding





Modules are defined as linguistic modular units when they correspond to syntactic units in the language used. That is, the programming language to be used should be able to directly support the modularity defined. For example, if the designer creates a sub-routine, any of the popular programming languages can implement it as a syntactic unit. But if an object containing data structures and procedures and their encapsulation as a single unit is defined, an object oriented language is necessary to directly represent this type of module in the language syntax.





Coupling is a measure of interconnection among modules in a software structure. Coupling depends upon interface complexity between modules, the point at which entry or reference is made to a module, and what data passes across the interface. Software designers strive for the lowest possible coupling. Simple connectivity between modules results in software that is easier to understand and less prone to a ripple effect caused when errors occur at one location and propagate through a system.





To achieve low coupling, the number of interfaces between modules should be minimised (few interfaces) and the amount of information that moves across an interface should be minimised (small interfaces). Whenever modules communicate, they should do it in an obvious and a direct way (explicit interfaces). For example, if module X and module Y communicate through a global data area, they violate the principle of explicit interfaces because the communication between the modules is not obvious to an outside observer. 





Finally the principle of information hiding is achieved when all the information about a module is hidden from outside access, unless that information is specifically defined as public information.





Although these design criteria and principles can be applied to any design method, OOD methods achieve each of these criteria more efficiently than other approaches. This results in modular architectures that allow us to meet each of the modularity criteria most effectively.





Adding Utility and Interface Objects to the Model


The software representation of the models generated by the analysis process may need the services provided by other objects. These include access to different hardware devices, format data for display and printouts, provide mathematical calculations and analysis, etc. Most of these services are available in the form of general purpose interface and utility class libraries. Thus the designer may need to identify appropriate interface and utility objects that are needed in the software representation of the system and include these in the model.





Object Descriptions


The design description of an object can take the following forms :


A protocol description that establishes the interface of an object by defining each message that the object can receive and the related operation that the object performs when it receives the message.


An implementation description that shows implementation details for each operation implied by a message that is passed to an object. Implementation details include information about the object’s private part, i.e., internal details about the data structures and procedure details that describe operations.





The protocol description is nothing more than a set of messages and corresponding comment for each message. As messages are signals that are sent from one object to another requesting the receiving object to execute one of its methods, these can conveniently be represented as function prototypes for each interface function along with suitable comments. For example,





QueryResponse InquiryClerk::processQuery(Query InputQuery);





shows that the method processQuery of an object of the InquiryClerk class takes an object InputQuery of the Query class and returns an object of the QueryResponse class.





For a large systems with many messages, it is possible to create message categories. For instance, an object may have a set of initialisation messages, a set of input messages and a set of output messages.





An implementation description of an object provides the internal (hidden) details that are required for implementation but are not necessary for invocation. That is, the designer of the object must provide an implementation description and must, therefore, create the internal details of the object. However, another designer or implementor who uses the object or other instances of the object, only requires the protocol description, but not the implementation description. 





An implementation description comprises of the following information :


a specification of the object’s name and reference to a class


a specification of private data structures with an indication of data items and types


a procedural description of each operation





The implementation description must contain sufficient information to provide for the proper handling of all messages described in the protocol description.





The difference between the information contained in the protocol description and that contained in the implementation description can be characterised in terms of users and suppliers of services. A user of the service provided by an object must be familiar with the protocol for invoking the service, i.e., for specifying what is desired. The supplier of the service (the object itself) must be concerned with how the service is to be supplied to the user, i.e., with implementation details 





Refining Class Operations


Once the objects in the solution space have been identified, the designers select the set of operations that act on the objects. Operations are identified by examining all verbs stated in the informal strategy (the processing narrative).





Although many different types of operations exist, they can generally be divided into three broad categories :


operations that manipulate data in some way (e.g., adding, deleting, reformatting, selecting etc.)


operations that perform a computation (e.g., calculation of means, variances etc.)


operations that monitor an object for the occurrence of a controlling event





Consider the previous example of a social security office. The operation to process the claims, basically consists of two main operations, retrieving the unprocessed claims from the filing cabinet and then processing these, using a book of rules, to prepare the claim statements. The latter may further be subdivided into a number of operations. These operations may be determined after consulting with the domain experts. For example, the processing clerk uses a book of rules to validate the claims. This book may contain rules as shown below





Old age pensions are applicable to people above 60 years of age but they cannot draw jobless allowance. Moreover, the old age pension should increase progressively every year, but the jobless allowance should decrease to force the jobless on benefits to try and gain employment.





Once the validity of a claim has been verified, each claim needs to be processed and a claim statement issued for each claim. Thus a single operation, processClaims, for the processing clerk can be implemented using three operations, retrieveClaims, validateClaims, prepareClaimStatements. Each of these operations becomes a part of the class representing processing clerk and has the knowledge of the internal data structures that implement the attributes of the class. However, in this particular case, they may be implemented as private operations as the external objects need only be concerned with the output of the processClaims operation. In other cases, if these refined operations provide useful services to other objects, they may be implemented as public operations.





Verbs connate actions or occurrences. In the context of OOD formalisation, we consider not only verbs but also descriptive verb phrases and predicates (e.g., is equal to) as potential operations. The grammatical parse is applied recursively until each operation has been refined to its most detailed level.





Dynamic Description


The dynamic model of the system under study can be represented by a state transition diagram. State transition is the change of the state of a system that is caused by the occurrence of an event. A state transition connects two states. A state may have a transition to itself and it is common to have many different state transitions from the same state. However each transition must be unique, i.e., there will never be any circumstance that would trigger more than one state transition from the same state. 





Each state transition diagram must have exactly one default start state. A state transition diagram may or may not have a stop state. A state transition diagram may be built to describe the behaviour of the complete system. Alternatively it may also be used to describe the behaviour of an ob
