Pointers

Finding Addresses : The & Operator

The & operator provides the address at which a variable is stored. If IntValue is the name of the variable, then &IntValue is the address of the variable. This address is the location in memory where the value assigned to the variable is stored. So if IntValue = 24 and the address where IntValue is stored is 12126, then

printf (“%d :: %u\n”,IntValue, &IntValue);

will produce

24 :: 12126

Altering Variables in the Calling Program

Consider a situation where one function is to be used to make changes in the variables of a different function. For example, a function is used to swap the values of two variables x, y. If the following program is used

/*	noptr.c	Demo of pointers	*/

#include <stdio.h>

void interchange(int a,int b);

int main(void)

{

	int x = 10;

	int y = 12;

	printf("Original :: x = %d :: y = %d\n",x,y);

	interchange(x,y);

	printf("New :: x = %d :: y = %d\n",x,y);

	return(0);

}

void interchange(int a,int b)

{

	int temp;

	printf("Original :: a = %d :: b = %d\n",a,b);

	temp = a;

	a = b;

	b = temp;

	printf("New :: a = %d :: b = %d\n",a,b);

}

The output of this program will be

Original :: x = 10 :: y = 12

Original :: a = 10 :: b = 12

New :: a = 12 :: b = 10

New :: x = 10 :: y = 12

So these values did not get swapped in function main even when swapping did occur inside the function interchange. This problem is solved if two values could be passed back, instead of one, from the interchange function. This is not possible using the return statement. To return more than one value from a function, pointers are used.

Pointers

A pointer is a symbolic representation of an address. So the address operator (&) with the name of the variable is known as the pointer to that variable. Thus &x is the pointer to x. The actual address is a number and pointer to the variable is a pointer constant (as the variable does not change its memory location as the program executes). If ptr is the name of a pointer variable, the statement ptr = &IntValue assigns IntValue’s address to ptr. Note that ptr is a variable and &IntValue is a constant.

The Indirection Operator : *

If there is a particular pointer, ptr, to a variable, the value stored in the memory location being pointed at by ptr can be found by using the indirection operator (*).

val = *ptr;

Thus if ptr is a pointer to IntValue and IntValue = 27, then after executing this statement val = 27.

Declaring Pointers

Declaration of a pointer variable is associated with the type of data stored in that specific memory location. This is because different variable types have different storage requirements and some pointer operations require knowledge of the storage size of the data type. Also, the program may need to know what kind of data is stored at that address. For example, a long and a float may use the same amount of storage but they store the numbers quite differently. Pointer variables are, therefore, declared as follows;

int *pi;		/*pointer to an integer*/

char *pc;	/*pointer to a char variable*/

float *pf;	/*pointer to a floating point variable*/

The type specification identifies the type of the variable pointed to and the asterisk identifies the variable itself as a pointer. So int *pi states that pi is a pointer and that *pi is of type int.

Using Pointers to Communicate Between Functions

The following example is a modified version of the previous example and uses pointers

/*	ptr1.c	Demo of pointers	*/

#include <stdio.h>

void interchange(int *a,int *b);

int main(void)

{

	int x = 10;

	int y = 12;

	printf("Original :: x = %d :: y = %d\n",x,y);

	interchange(&x,&y);

	printf("New :: x = %d :: y = %d\n",x,y);

	return(0);

}

void interchange(int *a,int *b)

{

	int temp;

	printf("Original :: a = %d :: b = %d\n",*a,*b);

	temp = *a;

	*a = *b;

	*b = temp;

	printf("New :: a = %d :: b = %d\n",*a,*b);

}

Now the output of this program is

Original :: x = 10 :: y = 12

Original :: a = 10 :: b = 12

New :: a = 12 :: b = 10

New :: x = 12 :: y = 10

This program managed to function as desired because the function call interchange(&x,&y) transmitted the addresses of x and y instead of their values. Thus a and b in interchange(int *a, int *b) are actually addresses of x and y. Therefore a and b are pointers to x and y.

Now as a==&x and b==&y, *a==x and *b==y, so temp = *a; actually assigns temp the value of x. Similarly, *a=*b; actually assigns x the value of y and *b=temp; assigns y the value of temp which was the original value of x.

Example

The following example uses a function, calculate, to perform the addition, subtraction, multiplication and division operations on the values assigned to two variables.

/*	calc.c	Demo of pointers	*/

#include <stdio.h>

void calculate(float x,float y,float *sum,float *diff,float *product,

 	 float *division);

int main(void)

{

	float x, y, sum, difference, product, division;

	x = 7.5;

	y = 0.5;

	calculate(x,y,&sum,&difference,&product,&division);

	printf("%5.2f + %5.2f = %5.2f\n",x,y,sum);

	printf("%5.2f - %5.2f = %5.2f\n",x,y,difference);

	printf("%5.2f * %5.2f = %5.2f\n",x,y,product);

	printf("%5.2f / %5.2f = %5.2f\n",x,y,division);

	return(0);

}

void calculate(float x,float y,float *sum,float *diff,float *product,

 	 float *division)

{

	*sum = x + y;

	*diff = x - y;

	*product = x * y;

	*division = x / y;

}

�
Pointers and Arrays

Introduction

A pointer is a symbolic way of using addresses. Since the hardware instructions of computing machines use addresses heavily, pointers allow us to express ourselves in a way that is close to the way the machines express themselves. This makes programs with pointers efficient. Moreover, pointers provide an efficient way of dealing with arrays.

An array’s name is also a pointer to the first element of an array. Thus if MyArray[] is an array, then

MyArray == &MyArray[0]

Both represent the memory address of the first element of the array. Both are pointers constants and they remain fixed for the duration of the program. However, they can be assigned as values to a pointer variable. The value assigned to this pointer can be changed, for example,

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

	int i, numbers[10], *numptr, data;

	char Temp[10];

	printf ("Address at the beginning of the array %u\n",numbers);

	numptr = numbers;

	for (i=0;i<10;i++)

	{

		printf("Enter number %d ",i);

		gets(Temp);

		numbers[i] = atoi(Temp);

		printf("%d\n",*(numptr+i));

	}

	for (i=0;i<10;i++)

	{

		printf("The value in location %d at address %u is ",

					i,numptr+i);

		printf("%d\n",*(numptr+i));

	}

	return(0);

}

Going through the first iteration of the second loop, 0 is added to numptr. numptr still points to the first address of the array. In the next iteration, the value of i is incremented to 1 and numptr + i , when interpreted by C is translated to add one storage unit. For arrays, this means that address is increased to the address of the next element and not just one byte. This is another reason why it is important to declare a pointer variable with respect to the type of variable a pointer points to. The address not just enough, the computer needs to know how many bytes are used to store the variable. Thus it can be said that

numbers + 2 == &numbers[2]

*(numbers+2) == numbers[2]

It is important not to confuse *(numbers+2) with *numbers + 2 . The value operator (*) has a higher precedence than +, so the latter expression means (*numbers)+2, i.e., 2 added to the value of the first element.

Arrays as Arguments to Functions

Consider the following example,

#include <stdio.h>

#include <stdlib.h>

void getData(int InArray[]);

void printData(int OutArray[]);

int main(void)

{

	int numbers[10];

	getData(numbers);

	printData(numbers);

	return(0);

}

void getData(int InArray[])

{

	char Temp[10];

	int i;

	for (i=0;i<10;i++)

	{

		printf ("Enter number %d ",i);

		gets(Temp);

		InArray[i] = atoi(Temp);

	}

}

void printData(int OutData[])

{

	int i;

	for (i=0;i<10;i++)

	{

		printf("Number[%d] = %d\n",i,OutData[i]);

	}

}

In the function declarations, InArray[] or OutArray[] does not create an array but a pointer. In the function calls, the argument numbers is a pointer to the first element of a 10 element array. The function calls pass pointers to both the functions. So these functions can be rewritten as

void getData(int *InArray);

void printData(int *OutArray);

respectively.

Thus when an array name is used as a function argument, a pointer is passed to the function. The function then uses this pointer to effect changes on the original array in the calling program. The above mentioned example can be rewritten as follows;

#include <stdio.h>

#include <stdlib.h>

void getData(int *InArray);

void printData(int *OutArray);

int main(void)

{

	int numbers[10];

	getData(numbers);

	printData(numbers);

	return(0);

}

void getData(int *InArray)

{

	char Temp[10];

	int i;

	for (i=0;i<10;i++)

	{

		printf ("Enter number %d ",i);

		gets(Temp);

		*(InArray + i) = atoi(Temp);

	}

}

void printData(int *OutData)

{

	int i;

	for (i=0;i<10;i++)

	{

		printf("Number[%d] = %d\n",i,*(OutData+i));

	}

}

It is also important to note that none of these functions have any information regarding the size of these arrays. This information can be hard coded in the programs as shown above or the last element of the array may contain a special value indicating an end of the array. It is also possible to pass this information as a separate argument to the function, e.g.,

void getData(int InArray[],int ArraySize);

Example

The following program lets the user enter a variable number of integer values, not more than 10 integers, and calculate their mean and sum. In the end, these statistics are presented to the user.

#include <stdio.h>

#include <stdlib.h>

#define MAX 10

int getData(int *InArray);

int add(int *InArray,int Count);

float getMean(int Sum,int Count);

int main(void)

{

	int Count;

	int Numbers[MAX];

	int Sum;

	float Mean;

	Count = getData(Numbers);

	Sum = add(Numbers,Count);

	Mean = getMean(Sum,Count);

	printf("Count = %d :: Sum = %d :: Mean = %f\n",Count,Sum,Mean);

	return(0);

}

float getMean(int Sum, int Count)

{

	float Mean;

	Mean = ((float) Sum)/((float) Count);

	return(Mean);

}

int add(int *InData,int Count)

{

	int i;

	int Sum = 0;

	for (i=0;i < Count;i++)

	{

		Sum += *(InData+i);

	}

	return(Sum);

}

int getData(int *InData)

{

	char ExitChoice, Temp[10];

	int Count = 0;

	do

	{

		printf("Enter Number %d : ",Count);

		gets(Temp);

		*(InData+Count) = atoi(Temp);

		Count++;

		puts("Press 'x' to exit, anyother key to continue entering data");

		ExitChoice = getche();

		puts("");

	}

	while((ExitChoice != 'x') && (Count < 10));

	return(Count);

}

�
Pointers to Structures

Introduction

It is generally advisable to pass a pointer to a structure into a function rather than a structure itself. This is because a structure variable may contain massive amount of data. It may therefore be advisable to pass only a pointer to the structure which represents only an address to the structure. Moreover, some older compilers do not allow the programmers to pass a structure as an argument to a function.

A pointer to a structure can be declared as follows,

struct Employee *APerson;

The pointer APerson then has to be made to point to any structure of the Employee type. This may be accomplished as follows,

struct Employee *APerson;

struct Employee AnotherPerson;

APerson = &AnotherPerson;

Members of a pointer to a structure can be accessed by the arrow operator (->). For example,

struct Employee

{

	char ID[5];

	char Name[25];

	char Appointment[5];

	char Department[10];

	float Pay;

};

and

struct Employee *APerson;

Now, the access to the Appointment member of the structure pointed to by APerson is possible by the expression APerson->Appointment . It is important to remember that APerson is a pointer but APerson->Pay is a member of the pointed to structure. Thus APerson->Pay is a float variable.

The second method for specifying the value of a structure member is by using the * operator. Thus the expression APerson->Pay is the same as (*APerson).Pay. The parenthesis are required because the . operator has a higher precedence than the * operator. Consider the following example,

#include <stdio.h>

#include <stdlib.h>

struct Employee

{

	char ID[5];

	char Name[25];

	char Appointment[5];

	char Department[10];

	float Pay;

};

void getData(struct Employee *AWorker);

void printData(struct Employee *AWorker);

int main(void)

{

	struct Employee APerson;

	getData(&APerson);

	printData(&APerson);

	return(0);

}

void printData(struct Employee *AWorker)

{

	printf("ID : %s\n",AWorker->ID);

	printf("Name : %s\n",AWorker->Name);

	printf("Appointment : %s\n",AWorker->Appointment);

	printf("Department : %s\n",AWorker->Department);

	printf("Net Pay : %f\n",AWorker->Pay);

}

void getData(struct Employee *AWorker)

{

	char Temp[10];

	puts("Enter ID ");

	gets(AWorker->ID);

	puts("Enter Name ");

	gets(AWorker->Name);

	puts("Enter Appointment ");

	gets(AWorker->Appointment);

	puts("Enter Department ");

	gets(AWorker->Department);

	puts("Enter Pay ");

	gets(Temp);

	AWorker->Pay = atof(Temp);

}

Using Arrays of Structures

Consider the following example,

#include <stdio.h>

#include <stdlib.h>

#define MAX_WORKERS 4

struct Employee

{

	char ID[5];

	char Name[25];

	char Appointment[5];

	char Department[10];

	float Pay;

};

void getData(struct Employee *AWorker);

void printData(struct Employee *AWorker);

void getAllWorkers(struct Employee *AllWorkers);

void printAllWorkers(struct Employee *AllWorkers);

int main(void)

{

	struct Employee AllWorkers[MAX_WORKERS];

	getAllWorkers(AllWorkers);

	printAllWorkers(AllWorkers);

	return(0);

}

void getAllWorkers(struct Employee *AllWorkers)

{

	int i;

	for (i=0;i < MAX_WORKERS;i++)

	{

		printf ("WORKER [%d]\n",i);

		getData(AllWorkers+i);

	}

}

void printAllWorkers(struct Employee *AllWorkers)

{

	int i;

	for (i=0;i < MAX_WORKERS;i++)

	{

		puts("\n\n\n");

		printf ("WORKER [%d]\n",i);

		printData(AllWorkers+i);

		puts("Press ENTER to continue ...");

		getche();

	}

}

void printData(struct Employee *AWorker)

{

	printf("ID : %s\n",AWorker->ID);

	printf("Name : %s\n",AWorker->Name);

	printf("Appointment : %s\n",AWorker->Appointment);

	printf("Department : %s\n",AWorker->Department);

	printf("Net Pay : %f\n",AWorker->Pay);

}

void getData(struct Employee *AWorker)

{

	char Temp[10];

	puts("Enter ID ");

	gets(AWorker->ID);

	puts("Enter Name ");

	gets(AWorker->Name);

	puts("Enter Appointment ");

	gets(AWorker->Appointment);

	puts("Enter Department ");

	gets(AWorker->Department);

	puts("Enter Pay ");

	gets(Temp);

	AWorker->Pay = atof(Temp);

}

As the name of an array is a synonym for its address, so it can be passed to a function. As with arrays of simple data types, an increment in a pointer to the array of structure actually moves the pointer to the next element in the array and not just the ne
