Introduction to C++

History of the Language

C++ is also called a better C. However, C++ is not the next version of C but a separate language which has been developed using C as the basis for its syntax. C was developed as a tool for driving an operating system. It, therefore, has certain characteristics such as speed, compactness, the ability to define different data types with different storage requirements, and constructs that allow the development of very low level code. These and several other factors made C a very popular programming language. Because of the similarity in the syntax and other basic constructs of the C language, C++ generally has a shorter learning curve. However, it also owes much in terms of its facilities to Simula 67 and Algol 68.

Simula was the first ever object oriented programming language developed during 1960’s as an extension to Algol 60. The basic philosophy on which Simula was based included some key aspects of object orientation such as the concepts of objects, encapsulation, inheritance and also dynamic memory management.

C++ was developed by Bjarne Stroustrup in 1983 at the AT&T Bell Labs and is basically a superset of C, though there may be some inconsistencies. Stroustrup’s experiences with Simula and BCPL (Basic Combined Programming Language) motivated him to develop a programming tool for complex projects. In his view, such a tool should

help with complexity (use classes)

ensure correctness (have strong type checking)

be affordable in terms of hardware and resources

be open, easy and cheap to integrate existing software libraries and facilities.

be portable

The language he developed was first called C with classes and later C++. The name basically derives from the increment operator in C, i.e., ++. The effect of the increment operator is to add one to the operand (C++ means something like C plus 1). Therefore, the name suggests that C++ is an incremental development of C - and extension of the existing syntax as opposed to a separate language.

There were several reasons for using C as the basis for this new language. Some of these may be listed as follows,

C is a good computational language and it would enable existing tools to be used in its development.

Stroustrup’s work at AT&T Bell Labs allowed him access to the compiler and associated software.

As the development of this language was a commercial project rather than an academic project, it was not practicable to build a new language entirely from scratch.

The combination of C’s low level programming power, its run time efficiency and the higher level constructs added with C++ mean that C++ is able to span a wide spectrum of programming applications. Despite the fact that C++ was developed on the cheap, it has proved extremely successful, with many former C applications migrating to it.

C++ is, in many ways, a better C and is primarily important for its addition of object orientation. C++ can be used to write procedural code just like C but its real value lies in the ability to write object oriented programs. In this sense it is a hybrid language, able to produce both traditional procedural and object oriented programs, or anything in between. From this point of view, it is useful as a tool for an incremental approach to object oriented programming.

Basic features and syntax that are shared by C and C++ include

the main() function

the use of function arguments

arithmetic and logical operators

control and looping statements

bitwise manipulation

basic data types

Basics of Standard Input Output in C++

C++ does not have any built in I/O operations. It maintains maximum flexibility by using functions in the standard library to support all such activities. C++ was designed to be upwardly compatible to C and, therefore, it contains all the familiar I/O functions, including getchar(), putchar(), scanf() and printf(). In fact a C program that depends heavily on these capabilities compiles as well under C++ as it does with an ordinary C compiler.

However, C++ greatly enhances the input and output of data. This enhancement includes a great improvement in convenience and a more streamlined interface to the outside world that eliminates the need for using large functions such as scanf() and printf(). The object oriented nature of C++ led to the creation of routines for getting the values from the keyboard and putting them on the display. These routines are as general as their counterparts in C, yet are much more efficient and simpler to use.

The I/O library for C++ has been defined in a header file iostream.h. which must be included in the program before main(). To output data onto the screen, cout followed by the insertion or put to operator (<<) is used. cout is actually an object predefined in C++ to correspond to the standard output stream. A stream is an abstraction that refers to the flow of data. The standard output stream normally flows to the screen display, although it can be redirected to other output devices.

For example, to output the contents of an integer variable x to the screen, following code is used

cout << x;

This syntax can be used to output any type of variable, or string literals enclosed in speech marks,

cout << “This is a string”;

Any function which returns a value can also be put into a cout statement in place of the variable. For example, to print the value returned by getAge() function following code may be used,

cout << getAge();

A series of items can be output in one cout statement by separating them with insertion operators as shown below,

cout << “The value of x = “ << x;

if x = 10, then the output on the screen will be

The value of x = 10

Certain operators, known as manipulators, are used with the insertion operator to modify or manipulate the way data is displayed. One of the most common manipulator is the endl manipulator. endl forces a line feed at the display output. For example, for the statement

cout << “This is the first line” << endl << “This is the second line;

the output is

This is the first line

This is the second line

In fact, endl is identical in function to the escape sequence ‘\n’ and the two are interchangeable.

The second manipulator is the setw manipulator. Consider each value displayed by cout as occupying a field; an imaginary box with a certain width. The default field is just wide enough to hold the value, e.g., the integer 567 will occupy a field 3 characters wide whereas the string “radio” will occupy a field 5 characters wide. However, in certain situations, this may not lead to optimal results.

setw manipulator specifies the field widths for the values to be displayed. It causes the number or string that follows it in the stream to be printed within a field n characters wide, where n is the argument to setw(n). The value is right justified within the field. For example, consider the following code

// Demonstration of endl and setw manipulators

//	mani.cpp

#include <iostream.h>

#include <iomanip.h>

int main(void)

{

	int dist1,dist2,dist3;

	dist1 = 3159;

	dist2 = 27;

	dist3 = 176;

	cout << "CITY " << "DISTANCE" << endl;

	cout << "Onecity " << dist1 << endl;

	cout << "Twocity " << dist2 << endl;

	cout << "Threecity " << dist3 << endl;

	cout << endl << endl << endl;

	cout << setw(9) << "CITY" << setw(9) << "DISTANCE" << endl;

	cout << setw(9) << "Onecity" << setw(9) << dist1 << endl;

	cout << setw(9) << "Twocity" << setw(9) << dist2 << endl;

	cout << setw(9) << "Threecity" << setw(9) << dist3 << endl;

	return(0);

}

The output displayed by this program is shown below,

CITY DISTANCE

Onecity 3159

Twocity 27

Threecity 176

 CITY DISTANCE

 Onecity 3159

 Twocity 27

Threecity 176

The first list is generated by a set of cout statements which do not use setw manipulator. The program outputs a value immediately after the preceding value. The second list is generated by a set of cout statements which use the setw manipulator to display both the city name and its distance from a specific point. As a result, the output is right justified within the field defined by the setw manipulator.

To input data from the keyboard, the word cin is used, followed by the extraction or the get from operator (>>). Thus the statement

cin >> x;

causes the program to wait for the user to type in a number. The resulting value is placed in variable x. The keyword cin is an object predefined in C++ to correspond to the standard input stream. This stream represents data coming from the keyboard unless it has been redirected. The extraction operator takes the value from the stream object on its left and places it in the variable on its right.

cin can be used to accept data into any type of variable. Similar to cout, a series of items can be put into one statement by separating them by extraction operators as follows,

cin >> x >> y;

However, this form is rarely used as it eliminates the opportunity to prompt the user between inputs. Moreover, it is also a potential source of error as the two values have to be separated by a space. Usually a cin statement is only used to accept a single value at a time.

The following example illustrates the use of cin and cout in a program. This program is a simple calculator. It accepts two values from the user and a character representing the operation to be performed. It performs the requested operation and prints the results on the screen.

//	calc.h

int add(int a,int b);

int subtract(int a, int b);

int multiply(int a,int b);

int divide(int a,int b);

//	Demonstration of cin, cout, multi-file projects

#include <iostream.h>

#include <calc.h>

int main(void)

{

	char op;

	int operand1,operand2;

	cout << "Enter operator ";

	cin >> op;

	cout << "Enter two operands seperated by a space" << endl;

	cin >> operand1 >> operand2;

	cout << endl << endl;

	cout << operand1 << op << operand2 << " = ";

	switch (op)

	{

		case '+':

			cout << add(operand1,operand2);

			break;

		case '-':

			cout << subtract(operand1,operand2);

			break;

		case '*':

			cout << multiply(operand1,operand2);

			break;

		case '/':

			cout << divide(operand1,operand2);

			break;

		default:

			cout << "INVALID OPERATOR" << endl;

	}

	return(0);

}

//	calc.cpp

#include <calc.h>

int divide(int a,int b)

{

	return(a/b);

}

int multiply(int a, int b)

{

	return(a*b);

}

int subtract(int a,int b)

{

	return(a-b);

}

int add(int a,int b)

{

	return(a+b);

}

Comments

There are two ways of writing comments in C++, on inherited from C and the other taken from BCPL. The C style comment is as follows

/*	This is a comment	*/

Everything in the source code between /* and */ is ignored by the computer regardless of how many lines the comment spans. For example,

/*	This is the first line of comments

	This is the second line of comments

	This is the third line of comments	*/

The style of comments introduced into C++ from BCPL is as follows

//	This is a comment

Note that while the comment has a beginning symbol (//), there is no terminating symbol. This is because this style of comments is terminated by the end of line marker. Therefore, such a comment cannot span more than one line.

//	This is the first line

//	This is the second line

//	This is the third line

Constants

C++ allows declaration and assignment of constants. These values remain constant throughout the execution of the program. Any attempt to alter the value of a symbol defined with this qualifier will elicit an error message from the compiler. Constants are declared and their values assigned with the keyword const as follows,

const float PI = 3.141;

const int BUFFER_SIZE = 80;

It is a common practice to write constant names in upper case to differentiate them from variable names which are typically lower case. As C++ is case sensitive, pi and PI would be regarded as different symbols by the compiler.

The chief advantage that the const modifier has over the more traditional #define construction is that the constant is a memory location like a variable and is not merely a substitute identifier. This distinction is an important consideration when using pointers because this modifier can be combined with a pointer variable declaration.

Abstract Data Types

The term data type defines the type of data which a particular variable can hold - it may be an integer, a character, a floating point number or any range of simple data storage representations. Object orientation allows the construction and use of more complex data types known as abstract data types which represent more realistic (or more worldly) entities. Whereas the integer data type defines how all integer numbers are handled in a program (how they are stored and what operations they can undergo, it may be required to represent a Bank Account data type which describes how all back accounts are handled in a program (again, how they are stored and what operations they can undergo).

Abstraction is about reducing complexity, ignoring unnecessary detail. An abstract representation of something is supposed to contain the essential features of what is being represented. A realistic painting contains all the details seen by the eye whereas an abstract painting intends to reflect the essential features of what is being seen. Another example is a map. Only the essential features of an area are shown on a map - it is not just an aerial photograph. Important elements are clearly shown and the unimportant ones are ignored.

Abstract Data Types in C++ Using Classes

An abstract data type in C++ is modeled with a class. A class has two parts, private and public. The private part contains elements which are to be hidden from public access. The public part of a class defines the interface of the class. Operations defined in the public as well as in the private parts constitute the behaviour of objects of that class.

The following code shows the syntax of a class. This class extends the basic data type integer by encapsulating a variable of type int and providing operations such as mathematical operations as well as type conversion, i.e. from integer to floating point number or a string.

//	Integer abstract data type

//	Integer.h

#include <stdlib.h>

class Integer

{

	private:

		int Value;

		char StringValue[10];

	public:

		void setValue(int InValue)

		{

			Value = InValue;

		}

		char* toString(void)

		{

			itoa(Value,StringValue,10);

			return(StringValue);

		}

		float floatValue(void)

		{

			return((float) Value);

		}

		int intValue(void)

		{

			return(Value);

		}

		void mod(int InValue)

		{

			Value = Value % InValue;

		}

		void divideBy(int InValue)

		{

			Value = Value/InValue;

		}

		void multiply(int InValue)

		{

			Value *= InValue;

		}

		void subtract(int InValue)

		{

			Value -= InValue;

		}

		void add(int InValue)

		{

			Value += InValue;

		}

};

Methods are usually known as member functions in C++. Member functions in the above mentioned class are defined inline, i.e., inside the class definition. The implementation code (the body of the method) is duplicated for every object created from this class. While this is perfectly acceptable for simple methods, it is not appropriate to define them inline when they are more than two lines long because of potentially large memory requirements.

In most cases the methods must be prototyped (declared) inside the class, with their definitions given outside the class using the double colon scope resolution operator (::) as follows,

return_type ClassName::MethodName(Parameter list ...)

The scope resolution operator tells the compiler that the method belongs to the named class even though it is implemented outside the class body.

The effect of defining methods out of line is that only one version of the method exists at run time, accessible to all objects of the class. This however requires a greater execution time. When defining methods out of line, the return type of the method appears to the left of the class name.

Methods can be of two basic types, selector methods and modifier methods. Selector methods are read methods. A read method allows access to an attribute but does not allow that attribute to be altered. It is also known as a get method. A modifier method is a write method which allows attributes to be altered. It is also known as a set attribute.

It is up to the designer of the abstract data type to decide which attributes may be read by selector methods and which may be altered by modifier methods. If an attribute has no selector method, then to all intents and purposes, it is invisible from outside the abstract data type. If it has no modifier method then its state cannot be altered. In practice most attributes have both get and set methods as a matter of course.

Points to remember

Attributes must has type, simple or abstract (e.g., int, char, float etc.)

Methods must have return types

Selector methods usually have a specific return type whereas modifier methods are often void. It is possible that a modifier method returns a value so as to indicate whether the write operation was successful or not.

It is a good programming practice to group selector operations followed by modifier operations.

Constructors

Certain processes and operations need to take place when objects are instantiated. The most important is the one which assigns the objects their unique identity. In a program this means memory space and instantiation of an object always involves reserving enough memory for the state data of that object. It does not have to reserve memory for the methods since, unlike the attributes, these are consistent for all objects of the class, not once for every object. The exception to this is very short methods which may be declared inline, i.e. inside the body of the class itself. Inline methods are duplicated for every object. This is purely an implementation detail of C++ and does not affect the general principle that methods are an identical set shared between all objects in the class.

A special method which reserves memory for a newly instantiated object is known as a constructor. In addition to the reservation of memory space, the constructor may also be extended to include other processes such as the initialisation of the state data of the object.

Following are the three basic kinds of constructors,

The Default Constructor. It takes no parameters and performs no processing other than the reservation of memory. It will always be called by the compiler if no user defined constructor is referred to by the programmer in the class definition.

User Defined Constructor. If parameters are required to be passed to the initialisation operations executed when an object is instantiated, the programmer has to define a constructor method explicitly. It is possible to have more than one constructor in a class provided that the different versions are defined by differences in the parameter list. This is known as overloading and gives more flexibility to the ways in which an object may be instantiated.

Copy Constructor. This is a simple concept as it is really a way of using the assignment (=) operator when creating new objects. It allows expressions like

new_object object2 = object1;

i.e., the new object is to be equal to the existing object. The copy constructor allows the instantiation of an object as an exact copy of another in terms of its attribute values. In the above mentioned example, the attribute values of object2 on instantiation would be copied from those of object1. The only difference between the objects will be their identities. Their states and behaviour will be the same until one or the other changes state. The default copy constructor can be used on any object without being explicitly defined. However, it is possible to provide a user defined copy constructor if additional processing is required.

Object Instantiation

Objects with unique names belonging to a specific class can be instantiated by simply declaring its type followed by its name, just like other data types. For example,

int x;			//an instance of type int

char y;			//an instance of type char

BankAccount z;	//an instance of type BankAccount

Declaring x as a type integer implies that x can be treated in the same way as any other integer and arithmetic operations can be performed on it. Declaration of z as the type BankAccount means that z can be treated as any other object of the type BankAccount. Thus it will have the attributes and methods defined by the class. To create multiple objects with unique names, each needs to be instantiated separately. For example,

BankAccount acct1;

BankAccount acct2;

BankAccount acct3;

Any of these objects can now respond to the use of their methods.

Invoking Methods by Sending Methods

When an object is identified by a unique name, anything in the public part of the class (usually the methods) can be called by putting a period (a dot operator) between the name of the object and the method. For example,

MyAccount.setAccountNumber(5147);

This calls the setAccountNumber method for the class to which MyAccount belongs, i.e., BankAccount class. A method call is known as sending its object a message. The only messages that can be sent to an object are those defined as methods in the public part of the class. Nothing in the private part of the class can be accessed via the dot operator (or any other operator).

Invoking the Constructor

As mentioned earlier, whenever an object is instantiated, a method known as the constructor is called to reserve memory for that object. If no constructor is defined by the user, the default constructor is invoked. The default constructor, however, has a limited application, since it only allocates memory for the object being instantiated. It is not possible to pass any parameter to the default constructor, nor to make it perform or call any other process. However, it may be appropriate in practice, when creating an object, to perform some initial processing, such as giving initial state values to some or all of the attributes. This can be done by writing a user defined constructor method, possibly with parameters, thereby replacing the default constructor.

Although initialisation processes do not have to be put into a constructor (a separate method can be written to do this initialisation), the advantage is that the constructor does not have to be explicitly called when creating an object. On the contrary, any other method implemented to perform the initialisation operation will have to be explicitly called.

It is important to note that, when providing a user defined constructor, one does not have to worry about the reservation of memory for the object. The crucial role of the default constructor is automatically (and invisibly) included even for user defined constructor.

Coding User Defined Constructors

A constructor for an object in C++ has three important aspects

It takes the same name as the class

It may take arguments

It cannot return values

Since the name of a constructor is the same as that of the class, then a constructor for a class named StringClass would also be called StringClass. The class prototype is given below,

class StringClass

{

	private:

		char StringValue[255];

	public:

		StringClass(void);

		StringClass(char *InData);

		char* getString(void);

		int getLength(void);

		int compare(char *InData);

		int concatenate(char *InData);

};

Note that since a constructor cannot return a value, it has no return type and no type can be stated (including void). This is an important distinction between the constructors and other methods - C++ functions normally require a return type, which defaults to int if none is specified.

To implement a constructor out of line, the scope resolution operator is used to separate the class name and the method name. Of course, for a constructor, these names are identical. For example,

StringClass::StringClass(void)

{

	strcpy(StringValue,"");

}

Such a user defined function is typically used to initialise the state of objects when they are created. As shown above, an empty string is copied to the StringValue attribute. A constructor can always call other functions to perform its task.

Parameterised Constructors

It is possible to pass parameter arguments to a user defined constructor. This gives the opportunity to create objects with different initial states depending upon the parameters passed when the constructor is called. For example, for the class StringClass, a constructor which takes in a parameter is shown below,

StringClass::StringClass(char *InData)

{

	strcpy(StringValue,InData);

}

If a parameterised constructor has been declared, a parameter argument must be supplied while creating an instance of the class StringClass. The default constructor that takes no arguments is no longer available as it has been replaced by the user defined constructor. Thus an instance of StringClass is created with a null terminated array provided as an argument,

StringClass NyName (“OmarBashir”);

Using the Copy Constructor

To use the default copy constructor, all that needs expressing is that one newly instantiated object equals another object of the same class. For example

StringClass AString = MyName;

Here an object of the class StringClass, AString, is instantiated to be equal to MyName, i.e., all the attribute values will be taken from those of MyName.

Here the default constructor being called is the copy constructor - one which copies all the attribute values of an existing object to another object of the same class. Note that since the copy constructor is a different method from the constructor, it is not affected by any parameters that may have been added to the user defined constructor.

Classes Objects and Memory

By now, this impression must have been reached that each object created from a class contains separate copies of that class’s data and member functions. This is a good first approximation since it emphasises that objects are complete self contained entities designed using the class specifier. The mental image here is of cars (objects) rolling off an assembly line, each one made according to a blue print (the class specifier).

However, things are different from this concept. Each object does have its own separate data items but all the objects in a given class use the same member functions. The member functions are created and placed in the memory only once - when their implementation is defined. Thus the member functions in a class are not duplicated every time another object of that class is instantiated as the functions for each object are identical. The data items, however, will hold different values, so there must be a separate instance of each data item in each object. Data is therefore placed in memory when each object is defined.

�

Objects in Memory

Although it is simpler to visualise each object as containing both its own data and its own member functions, but in some situations, such as in estimating the size of an executable program, it is helpful to know what is happening behind the scenes.

Examples

Constructors

//	Program to demonstrate a default constructor

#include <iostream.h>

#include <string.h>

class Person

{

	private:

		char Name[25];

		int Age;

	public:

		void set(char *InName,int InAge);

		char* getName(void);

		int getAge(void);

};

void Person::set(char *InName,int InAge)

{

	strcpy(Name,InName);

	Age = InAge;

}

char* Person::getName(void)

{

	return(Name);

}

int Person::getAge(void)

{

	return(Age);

}

int main(void)

{

	char InName[25];

	int InAge;

	Person ME;

	cout << "Enter your name and age seperated by a space ";

	cin >> InName >> InAge;

	ME.set(InName,InAge);

	cout << endl << endl << endl;

	cout << "My name is " << ME.getName() << " and I am " << ME.getAge();

	cout << " years old" << endl;

	return(0);

}

//	Program to demonstrate a user defined constructor

#include <iostream.h>

#include <string.h>

class Person

{

	private:

		char Name[25];

		int Age;

	public:

		Person(void);

		Person(char *InName,int InAge);

		void set(char *InName,int InAge);

		char* getName(void);

		int getAge(void);

};

Person::Person(void)

{

}

Person::Person(char *InName,int InAge)

{

	set(InName,InAge);

}

void Person::set(char *InName,int InAge)

{

	strcpy(Name,InName);

	Age = InAge;

}

char* Person::getName(void)

{

	return(Name);

}

int Person::getAge(void)

{

	return(Age);

}

int main(void)

{

	char InName[25];

	int InAge;

	Person ME("Omar Bashir",30);

	Person YOU;

	cout << "Enter your name and age seperated by a space ";

	cin >> InName >> InAge;

	YOU.set(InName,InAge);

	cout << endl << endl << endl;

	cout << "My name is " << ME.getName() << " and I am " << ME.getAge();

	cout << " years old" << endl;

	cout << endl << endl << endl;

	cout << "Your name is " << YOU.getName() << " and you are " << YOU.getAge();

	cout << " years old" << endl;

	return(0);

}

//	Program to demonstrate a copy constructor

#include <iostream.h>

#include <string.h>

class Person

{

	private:

		char Name[25];

		int Age;

	public:

		Person(void);

		Person(char *InName,int InAge);

		void set(char *InName,int InAge);

		char* getName(void);

		int getAge(void);

};

Person::Person(void)

{

}

Person::Person(char *InName,int InAge)

{

	set(InName,InAge);

}

void Person::set(char *InName,int InAge)

{

	strcpy(Name,InName);

	Age = InAge;

}

char* Person::getName(void)

{

	return(Name);

}

int Person::getAge(void)

{

	return(Age);

}

int main(void)

{

	char InName[25];

	int InAge;

	Person ME("Omar Bashir",30);

	Person YOU = ME;

	cout << "My name is " << ME.getName() << " and I am " << ME.getAge();

	cout << " years old" << endl;

	cout << endl << endl << endl;

	cout << "Your name is " << YOU.getName() << " and you are " << YOU.getAge();

	cout << " years old" << endl;

	cout << "Enter my name and age seperated by a space ";

	cin >> InName >> InAge;

	ME.set(InName,InAge);

	cout << endl << endl << endl;

	cout << "My name is " << ME.getName() << " and I am " << ME.getAge();

	cout << " years old" << endl;

	cout << endl << endl << endl;

	cout << "Your name is " << YOU.getName() << " and you are " << YOU.getAge();

	cout << " years old" << endl;

	return(0);

}

StringClass

#include <string.h>

class StringClass

{

	private:

		char StringValue[255];

	public:

		StringClass(void);

		StringClass(char *InData);

		char* getString(void);

		int getLength(void);

		int compare(char *InData);

		int concatenate(char *InData);

};

#include <CString.h>

StringClass::StringClass(void)

{

	strcpy(StringValue,"");

}

StringClass::StringClass(char *InData)

{

	strcpy(StringValue,InData);

}

int StringClass::concatenate(char *InData)

{

	int Success;

	int TotalLength;

	TotalLength = strlen(StringValue) + strlen(InData);

	if (TotalLength < 254)

	{

		Success = 0;

		strcat(StringValue,InData);

	}

	else

	{

		Success = -1;

	}

	return(Success);

}

int StringClass::compare(char *InData)

{

	return(strcmp(StringValue,InData));

}

int StringClass::getLength(void)

{

	return(strlen(StringValue));

}

char* StringClass::getString(void)

{

	return(StringValue);

}

#include <CString.h>

#include <iostream.h>

int main(void)

{

	char InData[256];

	cout << "Enter a string "<<endl;

	cin >> InData;

	StringClass AString(InData);

	cout << "Length = " << AString.getLength() << endl;

	cout << "Enter another string ";

	cin >> InData;

	if (AString.concatenate(InData) != -1)

	{

		cout << "SUCCESSFUL CONCATENATION"<<endl;

	}

	else

	{

		cout <<"UNSUCCESSFUL CONCATENATION"<<endl;

	}

	if (AString.compare("OmarBashir") == 0)

	{

		cout << "MATCHED" << endl;

	}

	else

	{

		cout << "NOT MATCHED" << endl;

	}

	cout << endl << endl << AString
