Object Lifetimes and Dynamic Objects





Object Persistence and Visibility


Some objects may exist throughout the execution of a program, and may be visible in all modules. Other objects may exist momentarily within the limited scope of a particular method or a statement body. Between these two extremes there may be a range of lifetimes and visibility among instantiated objects.





Types of Objects


Following four types of objects may be instantiated in a program


External (Global) Objects. These objects are persistent throughout the lifetime of a program and have a file scope visibility throughout the module source file. These objects can be made visible in more than one module or in all modules.


Automatic (Local) Objects. These objects are persistent and visible only throughout the (local) scope in which they are created.


Static Objects. These objects are persistent throughout a program but only visible within their local scope.


Dynamic Objects. Lifetimes may be controlled within a particular scope. In some programs there may be a fixed number of clearly identifiable objects whose existence is predictable in all runs of a program. When objects are predictable enough to be identified at compile time, they can be assigned unique names. External, static or automatic objects are declared on the basis of the required persistence and visibility. In contrast, dynamic objects cannot be identified at compile time either in terms of their quantities or their identities, and their lifetimes may be controlled independently of the scope.





Destructor Methods


If an object cannot be instantiated without a constructor method, it follows that an object cannot be destroyed without a destructor method. This is a method that allows the destruction of an object. If one has not been defined, a default destructor is called whenever an object is destroyed. Its primary purpose is to free the memory used by the object. Like the constructor, it can be extended by the programmer to perform additional functions if required. However, unlike the constructor, it cannot take parameters. The destructor executes when the object is destroyed either specifically by the programmer (in the case of dynamic objects), by falling out of scope (automatic objects) or by program terminating (external and static objects). 





As the default destructor frees the memory used by the object when it has been destroyed, this process is known as clean-up. For dynamic objects, memory clean-up needs to be performed by the programmers by explicitly calling the destructor. If a dynamic object falls out of scope before the destructor has been called, the destructor is not called automatically and no clean-up takes place. This can have serious consequences for memory management in programs.





Some languages have garbage collection facilities which manage the memory disposal of dynamic objects no longer being used. These facilities manage to recover memory more efficiently than the destructor. However, since C++ has no garbage collection mechanisms, the onus is on the programmer to ensure that unwanted objects do not exist in the memory.





Calling the Destructor


The destructor call for an automatic object is implicit - it happens when (and only when) that object falls out of the scope. In contrast, the destructor call for a dynamic object must be explicitly stated - it is a programmer’s responsibility.





Defining a Destructor Method


A default destructor does not need to be defined by the programmer. Its sole function is to free the memory previously allocated to the respective object. However, the destructor may be extended to perform other required processes.





Like the constructor, the destructor has certain characteristics which mark it out from other methods. These may be listed as follows,


It takes the same name as the class, preceded by the tilde character (~)


It cannot take arguments


It cannot return a value





Thus for a class AutoClass, both the constructor and destructor would be called AutoClass, but the name of the destructor would be preceded by the tilde which also appears in any out of line definition of the destructor method. For example, 





class AutoClass


{


	private:


		char WhereAmI[100];





	public:


		AutoClass(char *InLocation);


		~AutoClass(void);


		char* getLocation(void);


};





AutoClass::AutoClass(char *InLocation)


{


	strcpy(WhereAmI,InLocation);


	cout << WhereAmI << " instantiated" << endl;


}





AutoClass::~AutoClass(void)


{


	cout << "Destroying " << WhereAmI << endl;


}





char* AutoClass::getLocation(void)


{


	return(WhereAmI);


}





It is a useful convention for the destructor (if defined) to follow the constructor (if defined) in the class declaration, followed by other methods.





As with the constructor, if the default destructor (which frees the memory allocated to an object) is all that is required, there is no need to state it explicitly. But if some processing is required to take place when an object is destroyed, then the destructor has to be specified. Unlike a constructor, a destructor cannot take parameters and cannot, therefore, be overloaded, i.e., there can only ever be one destructor per class. As mentioned previously, the destructor method is invoked whenever an object is destroyed. This may be done by the compiler (in the case of external, static and automatic objects) or explicitly by the programmer (in the case of dynamic objects).





Automatic Objects


Automatic objects exist in a predictable manner for a particular period of time. These objects are locally declared, i.e., these are always instantiated within the scope of part of a program module. Automatic objects are automatically destroyed when they fall out of the scope in which they are instantiated. The instantiation and destruction of automatic objects occurs in a constant and predictable manner, these can have unique names and their existence is confined to the particular scope in the program.





Similarly, depending upon where it is instantiated, the object may be in existence for the whole time the program is in execution, but not necessarily visible throughout run time. This is because even if an automatic object persists throughout a program module, it cannot be made visible in other modules in the system. Since braces delimit all block structures in C++ (functions, if statements, loops etc.), automatic objects can be declared within any of these. An example of the use of automatic variables is listed below,





#include <iostream.h>


#include <string.h>





void doFunction1(void);





class AutoClass


{


	private:


		char WhereAmI[100];





	public:


		AutoClass(char *InLocation);


		~AutoClass(void);


		char* getLocation(void);


};





AutoClass::AutoClass(char *InLocation)


{


	strcpy(WhereAmI,InLocation);


	cout << WhereAmI << " instantiated" << endl;


}





AutoClass::~AutoClass(void)


{


	cout << "Destroying " << WhereAmI << endl;


}





char* AutoClass::getLocation(void)


{


	return(WhereAmI);


}








int main(void)


{


	AutoClass Auto1("In Main");


	int i = 0;


	do


	{


		AutoClass Auto2("In Do While");


		cout << i << endl ;


		i++;


	}


	while (i<5);


	doFunction1();


	cout << Auto1.getLocation() << endl;


	return(0);


}





void doFunction1(void)


{


	AutoClass Auto3("In Function 1");


	int i;


	for (i=0;i<25;i++)


	{


		cout << i << " : ";


	}


	cout << endl;


}





This program generates the following output,





In Main instantiated


In Do While instantiated


0


Destroying In Do While


In Do While instantiated


1


Destroying In Do While


In Do While instantiated


2


Destroying In Do While


In Do While instantiated


3


Destroying In Do While


In Do While instantiated


4


Destroying In Do While


In Function 1 instantiated


0 : 1 : 2 : 3 : 4 : 5 : 6 : 7 : 8 : 9 : 10 : 11 : 12 : 13 : 14 : 15 : 16 : 17 : 18 : 19 : 20 : 21 : 22 : 23 : 24 : 


Destroying In Function 1


In Main


Destroying In Main





Three interesting things can be observed here,


Auto1 persists for the entire execution of the program but is visible only in function main


Auto2 is instantiated at the beginning of every iteration of the do-while loop and is destroyed at the end of the loop


Auto3 is instantiated when the function doFunction1 starts execution and is destroyed when the function terminates





Dynamic Objects


It is possible that objects in a system are not predictable enough to be instantiated as external, static or automatic objects. This happens when the programmer is unable to predict at compile time


object identities


object quantities


object life times





In such circumstances, external, automatic and static objects cannot be used as for these objects, their identities, quantities and life times must be predictable at compile time.





Dynamic objects cannot be assigned unique names which are possible with other types of objects. Dynamic objects are, therefore, referenced using pointers. Dynamic objects are created by directing, at runtime, a pointer to an area of dynamically allocated memory. The constructor is, therefore, called via the pointer. Dynamic objects are created using the new operator and are destroyed using the delete operator. Similarly, as dynamic objects are referenced using pointers, their members are accessed using the arrow operator (->).





The new operator is used in C++ to allocate memory for dynamic objects as well as variables of other types. The syntax is based on the creation of a pointer and then direction of that pointer to an area of memory which will contain an object. For example,





ClassName *OneObject;





This pointer is now able to point to an object of ClassName class. The pointer can be directed to any ClassName instantiated using the new operator,





OneObject = new ClassName;





It is assumed here that the ClassName has a constructor without any parameters.





OneObject is not the name of an object, but the name of a pointer to an object. It is able to point to any dynamic object of that class, and may be redirected at runtime to point to various dynamic instances of the ClassName class. It is important to note that dynamic objects instantiated using new do not have names - they simply occupy a memory space which may be referenced by a pointer.





For dynamic objects there is no automatic destructor call (and therefore no execution of any code defined in the destructor) and no clean-up of memory which may be bothersome in large programs. C++ uses the delete operator to destroy objects which have been instantiated dynamically using the new operator. delete explicitly calls the destructor which destroys the object currently referenced by the pointer,





delete MyObject;





Note that this destroys the object (by freeing its memory space), not the pointer. The pointer is still available to point to other objects of the class.





Consider the following example,





#include <iostream.h>


#include <string.h>





class DynaClass


{


	private:


		char WhereAmI[100];





	public:


		DynaClass(char *InLocation);


		~DynaClass(void);


		char* getLocation(void);


};





DynaClass::DynaClass(char *InLocation)


{


	strcpy(WhereAmI,InLocation);


	cout << WhereAmI << " instantiated" << endl;


}





DynaClass::~DynaClass(void)


{


	cout << "Destroying " << WhereAmI << endl;


}





char* DynaClass::getLocation(void)


{


	return(WhereAmI);


}





int main(void)


{


	DynaClass *DynaObject;


	cout << "Instantiating the object" << endl;


	DynaObject = new DynaClass("A Dynamic Object");


	cout << DynaObject->getLocation() << endl;


	delete DynaObject;


	return(0);


}





The output of this program is as follows





Instantiating the object


A Dynamic Object instantiated


A Dynamic Object


Destroying A Dynamic Object





Consider the following example where the objects are created dynamically





#include <iostream.h>


#include <string.h>


#include <conio.h>


#include <stdio.h>





class DynaClass


{


	private:


		char WhereAmI[100];





	public:


		DynaClass(char *InLocation);


		~DynaClass(void);


		char* getLocation(void);


};





DynaClass::DynaClass(char *InLocation)


{


	strcpy(WhereAmI,InLocation);


	cout << WhereAmI << " instantiated" << endl;


}





DynaClass::~DynaClass(void)


{


	cout << "Destroying " << WhereAmI << endl;


}





char* DynaClass::getLocation(void)


{


	return(WhereAmI);


}





int main(void)


{


	DynaClass *DynaObject[10];


	char Message[100];


	int Objects = 0;


	int i;


	char UserChoice = 'z';


	do


	{


		if (kbhit() != 0)


		{


			cout << endl << endl;


			UserChoice = getch();


			switch (UserChoice)


			{


				case 'c':


				{


					if (Objects < 10)


					{


						sprintf(Message,"Object %d",Objects);


						DynaObject[Objects] = new DynaClass(Message);


						Objects++;


					}


					else


					{


						cout << "NO MORE MEMORY" << endl;


					}


					break;


				}


				case 'd':


				{


					if (Objects > 0)


					{


						Objects--;


						delete DynaObject[Objects];


					}


					else


					{


						cout << "NO MORE OBJECTS TO DESTROY" << endl;


					}


					break;


				}


			}


			for(i=0;i<Objects;i++)


			{


				cout << DynaObject[i]->getLocation() << endl;


			}


		}


	}


	while(UserChoice != 'x');


	for (i=0;i<Objects;i++)


	{


		delete DynaObject[i];


	}


	return(0);


}





This program creates and destroys objects dynamically on user’s command (up to 10 objects). If the user presses c, the program checks if the number of currently instantiated objects is less than ten. If it is less than ten then a new object is instantiated using the new operator and its reference is assigned to the pointer in the array which is not pointing to any object. If the user presses d, the object last instantiated is destroyed using the delete operator. If the user presses x, the program terminates after deleting all the remaining objects using the delete operator.





Directing Pointers to NULL


It is worth noting that a pointer which is not directed to an object may point to any random area of memory. To determine if that pointer is actually referencing an object or not, all pointers that are not currently referencing objects should be addressed to NULL. NULL is equivalent to the base memory address (0). This constant is declared in stdlib.h and stddef.h and is automatically included in iostream.h.





Explicit direction of pointers to NULL is a useful device for checking what a pointer is addressing. For example,





if (MyObject == NULL)


{


	cout << “No object referenced” << endl;


}


else


{


	cout << “MyObject referenced” << endl;


}





It is a good practice always to initialise pointers to NULL when they are declared. Not only does it allow determining if the pointer is referencing a valid object but using delete with a pointer which is directed to NULL is guaranteed to be harmless.





Losing Objects


If a pointer to an object created with the new operator is allowed to pass out of scope without using the delete operator, the destructor will not be called. The object still exists but is lost, and since it has no pointer to reference it, it will be unreachable. In a large program, garbage objects such as this may eventually cause memory management problems. It is up to the programmer to ensure that every object has at least one pointer referencing it at a given time.





Note that the same pointer can be used to instantiate many objects. Every time a new used, the pointer is redirected to a new area of memory. It does not automatically destroy any object which the pointer may already be referencing. Unless another pointer is already pointing to that object, it will be lost. 





Arrays of Objects


An array of objects can be created as shown below,





MyClass MyObject[10];





This statement instantiates 10 objects of the MyClass class as an array.





It is important to note that, while instantiating objects as an array, the default constructor is used to allocate memory. If the class has a user defined constructor, it should be overloaded with a constructor that does not take any arguments. For example,





MyClass(void){}





Some user defined operations that do not require external parameters may also be executed within this constructor. For example,





MyClass(void)


{


	cout << “Object instantiated” << endl;


}





This prints the following line when an object of MyClass class is instantiated,





Object instantiated





When an array of 10 objects is declared, constructor for each object in this array is instantiated and as many lines of this message are printed on the display as is the size specified for the array.





It is also important to note that there is no bounds checking in C++ arrays. If an object beyond the end of the array is accessed, neither the compiler not the runtime system provides any indication. However, such an operation may access and update other sections of memory (i.e. data in other programs or program code itself). This can cause an erratic behaviour of the system or even a complete system crash.





Thus the programmer has to deal with the array bounds checking. If it seems that the user will or needs to access an object beyond the array bounds then either the array should be made larger or some means of warning the user should be devised.





A member function of an object that is an array element is accessed similar to a structure member that is an array element. For example,





MyObject[i].getData();





The member function of an object that is an array element is accessed using the dot operator. The array name followed by the index i in brackets joined using the dot operator to the member function name followed by parenthesis.





Consider the following example,





#include <iostream.h>


#include <string.h>


#include <stdio.h>





class AutoClass


{


	private:


		char WhereAmI[100];





	public:


		AutoClass(void)


		{}


		AutoClass(char *InLocation);


		~AutoClass(void);


		void setLocation(char *InData);


		char* getLocation(void);


};





void AutoClass::setLocation(char *InData)


{


	strcpy(WhereAmI,InData);


	cout << WhereAmI << " initialised" << endl;


}





AutoClass::AutoClass(char *InLocation)


{


	setLocation(InLocation);


}





AutoClass::~AutoClass(void)


{


	cout << "Destroying " << WhereAmI << endl;


}





char* AutoClass::getLocation(void)


{


	return(WhereAmI);


}





int main(void)


{


	AutoClass AutoObjs[10];


	int i;


	char Message[100];


	for (i=0;i<10;i++)


	{


		sprintf(Message,"Object %d",i);


		AutoObjs[i].setLocation(Message);


	}





	for (i=0;i<10;i = i+2)


	{


		cout << AutoObjs[i].getLocation() << ":";


	}





	cout << endl;





	for (i=1;i<10;i = i + 2)


	{


		cout << AutoObjs[i].getLocation() << ":";


	}


	cout << endl;


	return(0);


}





This program generates the following output,





Object 0 initialised


Object 1 initialised


Object 2 initialised


Object 3 initialised


Object 4 initialised


Object 5 initialised


Object 6 initialised


Object 7 initialised


Object 8 initialised


Object 9 initialised


Object 0:Object 2:Object 4:Object 6:Object 8:


Object 1:Object 3:Object 5:Object 7:Object 9:


Destroying Object 9


Destroying Object 8


Destroying Object 7


Destroying Object 6


Destroying Object 5


Destroying Object 4


Destroying Object 3


Destroying Object 2


Destroying Object 1


Destroying Object 0





This program instantiates 10 objects of the AutoClass. After instantiation, their attributes are initialised. Two for loops are used to display the contents of the attributes of objects with even and odd index values respectively. As the objects in the array are automatic objects, when the program terminates, these objec
