Aggregation

Introduction

Aggregation is a relationship between objects which can be described by a number of similar terms, e.g.,

Composition

Part Whole

A Part Of

Has a

Containment

In this type of a composition relationship, classes do not inherit from other classes. Instead, an object of one class may have its representation defined by other objects rather than by attributes (simple data types and data structures). The enclosing class does not inherit any attribute or method from these other included classes. Thus it is not a classification relationship. Rather, it is a relationship (or association) between objects. An object of the enclosing class is composed wholly or partly of objects of other classes. This relationship is known as aggregation.

Containment vs. Containers

Container classes may contain objects of other classes but do not depend upon them for their representation. Although they can be seen as types of aggregation, distinction must be defined between containers and containment.

In containment, a composition relationship defines how an object is composed of other objects in a fixed relationship. Aggregated objects cannot exist without its components, which will probably be of a fixed and stable number or at least will vary within a fixed set of possibilities.

On the contrary, a container is an object (of a container class) which is able to contain other objects. The existence of a container is independent of whether it actually contains any object at a particular instance. Moreover, contained objects will probably be a dynamic and possibly heterogeneous collection (i.e. the objects contained may be of many different classes).

Consider the example of a car. One end of a car is the engine compartment and the other is the storage compartment for the luggage. The relationship between the car and the engine is one of containment - the engine is an essential component of the car. An object which does not consist of an engine object is not a car as it is unable to exhibit the behaviour of a car. However, the integrity of a car as an object is not affected by what is in the storage compartment. Thus the storage compartment is simply a container and exists independently of its contents. Objects contained within the storage compartment do not affect the behaviour of the car object.

Abstraction and Aggregation

Both inheritance and aggregation relate to levels of abstraction but in a different way. In a classification hierarchy, base classes are more abstract than derived classes, particularly if the base class is not appropriate for instantiation. For example, vehicle is a more abstract than bus.

In a composition relationship, door is a more abstract concept than door lock as the door object can be perceived through its behaviour without necessarily being concerned with its components (e.g., the type of door lock). In the case of containers, the container is more abstract than objects which it contains, particularly if that container is an artifact of the implementation such as a tree or a list which has no direct real world parallel. However, the elements of a composition relationship must represent instantiated objects at run time in order to create an object of the aggregate class. On the contrary, a classification hierarchy may contain many pure abstract classes which cannot be instantiated. For example, to make a door object, objects of classes lock, handle, hinge, letterbox etc. must also be instantiated. However, to instantiate an object of class Bus, an object of class Vehicle need not be instantiated.

Properties of Aggregation

Certain properties associated with objects in an aggregation relationship are given below,

Transivity. If A is a part of B and B is a part of C then A is a part of C. For example, if radiator is a part of engine and engine is a part of car, then radiator is a part of car.

Antisymmetry. If A is a part of B then B is not a part of A. For example, if steering is a part of car then car is not a part of steering.

Propagation. The environment of the part is the same as that of the assembly. For example, if the car is in the garage then the steering is unlikely to be somewhere else.

Layers of Aggregation

Aggregation may exist in several layers, so that objects are composed of other objects. For example, a car is composed of an engine, wheel, doors etc. These components, in turn, consist of many smaller components, e.g. an engine consists of cylinders, pistons, crankshaft, valves etc. The objects which are parts of a larger object may or may not have an existence independent of the larger object.

Aggregation can be fixed, variable or recursive.

Fixed Aggregation exists when the particular numbers and types of component parts are predefined, e.g., a car has one engine, four wheels, one steering wheel, etc.

Variable Aggregation occurs when the number of levels of aggregation are fixed but the number of parts may vary, for example, propulsion system of a multistage rocket.

Recursive Aggregation exists when an object contains components of its own type. A specific example in C++ is the ability for an object to contain a pointer of its own type allowing it to send messages to other objects of the same class.

Partial Aggregation

Aggregation in object oriented programming is in fact a partial application. Thus one class may use one or more objects of another class in order to represent its internal state, but may well have other attributes which are not objects. In many cases these are not the pure hardware aggregation of parts (where discrete physical components create a larger object) but more abstract collection of objects and attributes which together provide the implementation of a particular class. Often the contained objects are artifacts of implementation, objects which are programming tools rather than representation of real world entities.

Delegation

Delegation is a relationship whereby the use of objects as implementation components for other objects may involve using only part of their interfaces. This means that an object which is used in an aggregation may not be fully utilised by the object which contains it because only a part of its behaviour might be appropriate in a particular context. This is particularly useful in situations where inheritance may be considered appropriate but the inheritance of the entire behaviour of a class is not required. This is more so in situations where the base class may have some methods which are inappropriate for the new class because the new class is not truly a kind of the existing base class but merely similar.

Delegation is an alternative, namely that some of the behaviour of the new class can be delegated to an object of the existing class without inheriting from it. Containment of the object is thus used to mask any behaviour that is not required.

Designing Class using Aggregation

Inheritance is restrictive because it results in a fixed relationship between classes. This further restricts the use of these classes in applications other than ones for which inheritance was employed. To develop open systems which are able to reuse code beyond the confines of one class library or operating environment, a layered approach may be used. This model can be represented by an inverted pyramid, each level of which represents a category of classes. Objects at each level may be constructed from aggregations of objects at the lower levels (preferably the level immediately below). One aspect of this is that all components, however simple they may be, are objects.

�

Each layer in the model contains classes at a particular level of detail. These layers are as follows,

Built in Data Types. This is the level which needs to be encapsulated. Since it is at the machine representation level, data types vary significantly between platforms and operating systems.

System Interface Layer. The simple data types are encapsulated at this level as classes so that they can be open. The environment specific representation of these standard data types is hidden behind the interface of the objects. These might include such basic components as strings, enumerated types, boolean data type, numbers and characters.

Primitive Application Layer. Objects appropriate in scale to be attributes of classes may be modeled here. Modeling attributes as classes in their own right affords the opportunity to add methods to them rather than enclosing classes having responsibility for all attribute behaviour. For a banking application, classes at this level might be of the scale of client’s name, address, account number etc. These classes should be composed of types defined in the system interface layer.

Semantic Binding Layer. At this level, attribute objects are aggregated into classes appropriate for application sized objects. Objects such as customer, account, bank etc. would appear at this level and are composed of the primitive application layer objects.

Application Layer. At the highest layer, large scale objects are instantiated in the final application.

C++ Syntax

The most basic approach by which aggregations may be constructed has component objects contained inside the composite objects. In a practical implementation, classes are defined with objects of other classes inside them. For instance, consider a simple calculating machine. It consists of two fundamental components, a terminal, which provides the input output facilities, and the calculator, which performs calculations on the input data and provides the results. At this level of analysis, a calculating machine is an example of fixed aggregation as it has a fixed number of components.

The code for the Calculator class is shown below,

//	Calc.h

class Calculator

{

	public:

		float add(float Operand1,float Operand2)

		{

			return(Operand1+Operand2);

		}

		float subtract(float Operand1,float Operand2)

		{

			return(Operand1-Operand2);

		}

		float multiply(float Operand1,float Operand2)

		{

			return(Operand1 * Operand2);

		}

		int divide(float Operand1, float Operand2,float *Result)

		{

			int Err;

			if (Operand2 < 0.0000001)

			{

				Err = -1;

			}

			else

			{

				Err = 0;

				*Result = Operand1/Operand2;

			}

			return(Err);

		}

};

The code for the Terminal class is shown below,

//	Terminal.h

#include<iostream.h>

class Terminal

{

	public:

		void getData(float *Operand1,char *Operator,float *Operand2)

		{

			cout << "Enter the first operand, the operator and "<< endl;

			cout << "the second operand seperated space and then press enter";

			cout << endl;

			cin >> *Operand1 >> *Operator >> *Operand2;

		}

		void printResults(float Results)

		{

			cout << " = " << Results << endl;

		}

		void printError(char *ErrorMessage)

		{

			cout << "*** " << ErrorMessage << " ***" << endl;

		}

};

It can be seen that the Terminal class only contains methods to facilitate input and output, whereas the Calculator class contains methods to perform simple arithmetic calculations. Objects of these classes can be combined in a CalculatingMachine class which provides the complete functionality. The code for this class is given below,

//	calcmach.h

#include <calc.h>

#include <terminal.h>

class	CalculatingMachine

{

	private:

		Terminal IODevice;

		Calculator Processor;

	public:

		void operate(void);

};

void CalculatingMachine::operate(void)

{

	float Operand1,Operand2,Result;

	char Operator;

	int Err;

	IODevice.getData(&Operand1,&Operator,&Operand2);

	switch(Operator)

	{

		case '+':

		{

			Result = Processor.add(Operand1,Operand2);

			IODevice.printResults(Result);

			break;

		}

		case '-':

		{

			Result = Processor.subtract(Operand1,Operand2);

			IODevice.printResults(Result);

			break;

		}

		case '*':

		{

			Result = Processor.multiply(Operand1,Operand2);

			IODevice.printResults(Result);

			break;

		}

		case '/':

		{

			Err = Processor.divide(Operand1,Operand2,&Result);

			if (Err < 0)

			{

				IODevice.printError("Divide by zero");

			}

			else

			{

				IODevice.printResults(Result);

			}

			break;

		}

	}

}

Objects of this class use methods of IODevice object of the Terminal class to accept calculation jobs. Depending upon the operations requested, appropriate methods of Processor object of the Calculator class are invoked to perform the required operation. Results of these operations are passed as parameters to a method of the IODevice object which displays these results to the user. A simple program that uses an object of the CalculatingMachine class is shown below,

// testcalc.cpp

#include <calcmach.h>

int main(void)

{

	CalculatingMachine Casio;

	Casio.operate();

	return(0);

}

Activities of some composing objects will depend upon the state of others. This is an example of propagation whereby the environment of the part is the same as that of the assembly. In some cases the behaviour of the component objects is constrained by the state of the aggregation.

Constructing Aggregation

When an object is created, any contained objects must be created at the same time. This implies that their constructors must be called. In some cases, none of the composing objects have parameterised constructors, so their instantiation is straight forward. However, if the constructors of contained objects take parameters, a syntax is required that should allow the parameters to be supplied via the constructor of the aggregation.

Consider the example of an aircraft. This aircraft contains a bombbay and a fuel tank. The bombbay has an attribute that indicates the number of bombs that the bombbay should carry. The fueltank has an attribute that indicates the amount of fuel the aircraft is carrying. Both these classes have parameterised constructors. Objects of these classes are instantiated as attributes within the aircraft class. The code for all the three classes and a test program are given below,

#include <iostream.h>

class BombBay

{

	private:

		int NumberOfBombs;

	public:

		BombBay(int InBombs)

		{

			NumberOfBombs = InBombs;

		}

		int getBombs(void)

		{

			return(NumberOfBombs);

		}

};

class FuelTank

{

	private:

		float FuelIn;

	public:

		FuelTank(float InFuel)

		{

			FuelIn = InFuel;

		}

		float getFuel(void)

		{

			return(FuelIn);

		}

};

class Aircraft

{

	private:

		FuelTank MainTank;

		BombBay MainBombBay;

		int crew;

	public:

		Aircraft(int InCrew,int InBombs,float InFuel);

		void showAircraft(void)

		{

			cout << "CREW :: " << crew << endl;

			cout << "BOMBS :: " << MainBombBay.getBombs() << endl;

			cout << "FUEL :: " << MainTank.getFuel() << endl;

		}

}

Aircraft::Aircraft(int InCrew,int InBombs,float InFuel):MainTank(InFuel),

	MainBombBay(InBombs)

{

	crew = InCrew;

}

int main(void)

{

	Aircraft B1(4,25,47900.50);

	B1.showAircraft();

	return(0);

}

Aircraft class has a parameterised constructor which takes three parameters. One parameter is used to initialise the private attribute of the class (crew) and the other two are used to initialise the component objects. The colon operator is used to allow aggregation parameters to be passed directly to the constructors of contained objects.

