3

echo $<tab>
#to see all vars

typeset -f
#to see all functions

215-1
___ 1
How can you look at the first E-mail message someone sent you, without running
the mail utility?

more /var/spool/mail/asmith

more mbox

#for already read messages
___ 2
 (1) .bash_profile (4) //red///dragon (7) */? (10) .././../

 (2) "red dragon" (5) /red/dragon (8) red/dragon

 (3) dragon (6) ?red* (9) red#@().dragon

 (a) Which of the expressions above are legal filenames on your Unix System?

.bash_profile

"red dragon"

dragon

?red*

 (b) Which of these are legal pathnames on your Unix System?
All pathnames are legal except (9) red#@().dragon

___ 3
Suppose you have a file named #save in the current directory.

How can it be properly renamed?

mv '#save' poundsave

___ 4

Create a file called -x. Rename it to filex.

mv -- -x filex

___ 5
Can Standard Output and Standard Error be the same file? Explain.

Yes, the following command redirects both STDOUT and STDERR to outputfile:

$ cat file1 fileZ > outputfile 2>> outputfile

#file1 exists, but fileZ doesn't

or

$ cat file1 fileZ > outputfile 2>> &1

$ cat outputfile

This is a test file1

content of the file1

cat: Cannot open fileZ: No such file or directory
error message

(The file descriptor number of Standard Output is 1, and Standard Error is 2).

* Can Standard Output and Standard Input be the same file? Explain.
No, it cannot be.

$ cat < file1 > file1

cat < file1 >> file1

#creates an infinite loop

cat < file1 > file1

#deletes a content of the input file

cat: Cannot use - as both input and output.
#error message in HP-UX
___ 6

What is wrong with the following command?

$ ls > outlist | wc –w

Output of the ls has been redirected to the file outlist, so nothing was piped to wc.

How can you fix it so outlist is preserved and the count is output?
ls | tee outputlist | wc -w

ls | wc -w > outlist

ls > outlist ; wc -w outlist
___ 7

What does this commadnline do?

$ > answer.old < answer wc

Counts lines, words, and characters in answer and stores it in answer.old.

___ 8

Rewrite the following command sequence as one pipeline command:

 $ ls -l /tmp >p; head -15 p > q; wc -l q > r; lp r; rm [p-r]

$ ls -l /tmp | head -15 | wc -l | lp

___ 9

* What will the following command lines output to your terminal screen?
$ printf -7 +3 = -4

bash: printf: illegal option: -7

printf: usage: printf format [arguments]

$ printf +7 -3 = +4

#Linux

+7$

$ print +7 -3 = +4

#HP-UX

+7 -3 = +4

* If there is output, why is it produced in this way? If none, why?
$ printf -7 +3 = -4

The dash (-) after the command name means that switch follows, and

-7 is invalid option for this command.

$ printf +7 -3 = +4

Returns first argument (everything until first space).

RK ### The printf +7 -3 = +4 only outputs the first argument because that

RK ### argument is a format specification for the rest of the arguments.

RK ### +7 didn't format the rest of the arguments so they were suppressed.

* How can you modify the printf statement(s) to produce the exact equation
indicated in its arguments.
$ printf "+7 -3 = +4\n"

+7 -3 = +4

$ printf " -7 +3 = -4\n"

#doesn't work without space before -7

 -7 +3 = -4

$ print - -7 +3 = -4

#HP-UX

___ 10
Explain the behavior of the following shell script:

 $ cat demo

 twoliner="This is line 1.

 This is line 2."

 printf "$twoliner\n"

 echo $twoliner

$ chmod +x demo

$ demo

This is line 1.

This is line 2.

This is line 1. This is line 2.

The printf command recognized a new line after the first sentence;

not so the echo command. The echo displays both lines on one.

___ 11
Which file(s) contain your primary prompt variable PS1?

.bash_profile

#or the .bashrc?

Modify your prompt to contain on the first line what it currently
contains and on the
second line also contain the time of day (Hours, Minutes only) followed by a bracket
enclosed updatable command number and then a %. For example:

rkatz@ned rkatz

18:45 [27] %

$ PS1='\u@\h \W\n`date +"%H:%M"` [\#] % '

man bash p.2401-2423:

\u the username of the current user

\h the hostname up to the first '.'

\W the basename of the current working directory

\n newline

\# the command number of this command

\t the current time in 24-hour HH:MM:SS format (18:45:33)

date +"%H:%M"

#cuts 18:45 only

$ PS1="\u@\h \W\n\t [\#] % "

#time stamp is 18:45:33
___ 12
In bash, there are 3 builtin commands that can be enabled:

1) builtin, 2) command, and 3) enable.
(a) Write a function called cd that changes directory and also

outputs the name of the new directory being changed, using bash's

builtin cd command rather than your function or an external command.

-------------------- from http://www.geocities.com/pageupt/ch08_11.htm

Typing command before the name of a command disables shell function lookup.

bash will only execute a built-in command or an external command with that name

(not our new function cd). So, you could keep the functions from re-executing

themselves by defining them this way:

cd () {

command cd $1

pwd

}

(b) Write a commandline that uses echo which explicitly uses the builtin

echo command, not a function or an external command.

The command command still allows bash to run an external command with the name you give.

To force bash to use a built-in command - but not a shell function or an external command -

type builtin before the command name. Although bash will always choose a built-in command

before an external command, you can specify the built-in echo unambiguously with:

$ builtin echo -n Hi there

(c) Write two different commandlines that use echo and which explicitly

does not use the builtin echo command, but rather an external command.

----1) to use the external command, type the absolute path for echo:

$ whereis echo

echo: /bin/echo /usr/share/man/man1/echo.1.bz2 /usr/share/man/man3/echo.3x.bz2

$ /bin/echo Hi there

Hi there

----2) Another way to get an external echo explicitly is to disable built-in echo:

$ enable -n echo
#(the effect of enable lasts until you exit the shell)

The bash type command confirms that I'll now be using the external echo:

$ type echo

echo is /bin/echo

[Notes: Type enable -a to see all bash buit-ins].

#! /bin/ksh

USAGE="compare"
#-----------------------KATZ

print -n "Enter a number: "

read number1

if [[$number1 == +([0-9])]] ; then

: # We're happy

else

echo Please enter a number next time! Bye! ; exit 1

fi

print -n "Enter another number: "

read number2

if [[$number2 == +([0-9])]] ; then

: # We're happy

else

echo Please enter a number next time! Bye! ; exit 2

fi

