2

___ 1 { }
Consider the Shell Script statements:

[-z "$var"] && (echo "true"; exit) || echo "false"

echo "next line"

if $var is zero length, the echo statement "echo true" is working,

but after that the "next line" is also displayed; The exit is not working.

Why? How can you fix this to work properly when $var is null?

 See notes 9.4:

Run commands in series

cmd1; cmd2

Run command in background

cmd1 &

Run command as co-process

cmd1 |&

Run cmd2 if cmd1 succeeds

cmd1 && cmd2

Run cmd2 if cmd1 fails

cmd1 || cmd2

Group cmds run in a subshell

(cmd1; cmd2) <---- that's what we have

Group cmds using current shell

{cmd1; cmd2;} <<<< we need

Pipe Stdout of cmd1 to Stdin of cmd2
cmd1 | cmd2

Because parenthesis around (echo "true"; exit) grouped commands, thus it

exits from the subshell, not from script.

To make script successfully exit when var is null, parenthesis need to be removed:

$ cat shellscr

 [-z "$var"] && echo "true"; exit || echo "false"

 echo "next line"

or ungroup (echo "true") with exit:

$ cat shellscr

 [-z "$var"] && (echo "true"); exit || echo "false"

 echo "next line"

or replace () with { }

#---------Katz

__ 2
* Write a commandline, using Braces Substitution: { } that produces the output:
Hello, John Doe and Cindy Doe!

$ d=Doe

$ echo Hello, John ${d} and Cindy ${d}

#no, they are shell braces

$ echo Hello, {"Frank ","and Shirley "}Doe !
#yes, this is a braces substitution

Hello, Frank Doe and Shirley Doe !

$ echo -n Hello, {"Frank ","and Shirley "}Doe ; echo !

Hello, Frank Doe and Shirley Doe!

#exact output

$ echo chap_{one,two,three}.txt

#examples from the textbook

$ mkdir version{A,B,C,D}
__ 3

In the following script and its execution,

 (1) Please explain what the script is doing (or supposed to do) and

 (2) why the final value printed on the last line is not 2.

 $ cat redir

 #! /usr/old/bin/sh

 N=1

 echo "initial value N = $N"

 for i in 1 2 3

 do

 read LINE

 N=2

 echo "loop value of N = $N"

 done << EOF

 1

 2

 3

 EOF

 echo "final value of N = $N"

 $ redir

 initial value of N = 1

 loop value of N = 2

 loop value of N = 2

 loop value of N = 2

 final value of N = 1

Loop is executed on the lower subshell, so the environment variable N=2 exists

only inside that loop. Outside of loop N=1 remains unchangeble.

RK [-1] ### N is a local variable both inside the loop and outside the loop.

What is loop doing? It prints loop value of var $N that many times as many

arguments in the loop (three in this case).
___ 4
Something wrong with this script. Fix it.

(There were [-x $i/$e] instead of correct [-x $i/$e], but still script doesn't work).

#! /bin/bash

for i in `echo $PATH | tr ':' ' '` ; do

 for e in $* ; do

 if [-x $i/$e] ; then

 echo $i/$e

 fi

 done

done

#--------------------for debug:

echo this is i: $i

echo this is e: $e
___ 5
Scripts that begin with #!/bin/ksh can be directly executed by the kernel,
even though it is not machine code. The kernel will invoke the named program
and can process an argument to the program.
What do the following programs do and what is their output when run:

(a) $ cat zap
(b) $ cat yup
 c) $ cat clack

#! /bin/mv
#! /bin/rm #! /usr/bin/awk NR>1{print}

$ zap zup
$ yup nope
 Mary had a little lamb

 Isn't that unusual?

a) zap was renamed to zup (self renaming script)

b) both yup and nope files have been deleted
c) self-printing file

$ clack

Mary had a little lamb

Isn't that unusual?

