2

___ 1 chmod
* Write a function that takes one or more filenames as arguments and adds execute permission
for the user for each file argument.

addx () {

chmod u+x $*

}

* With the mask 462, what default access privileges are

associated with any new file that you create on the system? Why?

umask 462 represents permissions that are taken away.
Default access privileges are 204 (given permissions), what is result of

666 - 462. (There is a 6 bit of maximum permission instead of 7 because execute

permission should be given manually every time a script is created).

___ 2
Suppose you know of a file but you don't have write access to it. e.g.

$ ls -l unwritable

-r--r--r-- 1 steven users 334 Oct 30 13:31 unwritable

$ cat > unwritable

unwritable: permission denied

$ cat unwritable > temp

$ vi temp

 ...

:wq

$ mv temp unwritable

override protection 444 for unwritable? y

$ cat unwritable

Steven wrote this orginally, and made the file read-only.

But then John came along and wrote:

I should not have been able to do this!!!

How can you prevent this from occurring?

---Write permissions must be removed from the directory that contains

 unwritable file. Unwritable file must be included in the

 unwritable directory in order to be fully protected.
__ 3
Give a chmod commandline that produces the same result as mesg y does.

chmod o+w /dev/pts/2

I am working at terminal 2

The chmod command gives the write permission to my current terminal (2).

RK [-1] ### Should be chmod g+w /dev/pts/*

RK ### communication via talk or write uses the Group category,

RK ### not the Other user category. Only your terminal will change;

RK ### all the others will get a permission denied message.
__ 4
Suppose the file, filep has the permissions: -rw--w-r--

 (a) What is the current umask value if filep was just created?

042

 What is the resulting permissions for the following:

 (b) chmod o+r-w,a+wx,u=x filep

--x-wxrwx

 (c) chmod -rx filep

if we did not specify "for whom", default is for "all" (?)

 (d) chmod 346 filep

--wxr--rw-
__ 5
Suppose the file, filep has the permissions: -rw-rw----

 (a) What is the current umask if filep was just created?

006

__ 6
* Write a commandline that makes the file "smith" have the access permissions:
rw--wx-w- . Write a command that verifies this.
 $ ls -l smith

-rw------- 1 shassan INTNET 40 Aug 10 13:26 smith

$ chmod g+wx,o+w smith

$ ls -l smith

-rw--wx-w- 1 shassan INTNET 40 Aug 10 13:26 smith

* What do each of the following commands do?

 $ chmod a+r,g+w,u-x *.doc

This commandline gives read permission to all, write permission to group, and

takes execute permission from user for all the files that have the .doc extention.

$ umask 2

This command takes away write permission from others (umask 002).

$ chmod u+rw,ugo= .profile

Takes all kinds of permissons away from everybody for .profile.

$ chmod 2333 lockfile

It gives write and execute permission to all. "s" means execute/search permission.

The following are the instructor’s notes (what doesn’t tell me much…)

s - Set user or group id

- execute the file name as a command and take on the privileges

of the owner or group for that file only while it is running
__ 7
Have the user input the full filename. Output if it is executable or not.

$ cat xperm

echo enter filename:

read filename

ls $filename > /dev/null 2> /dev/null
#to test if file exists on your system

if [$? = 1] ; then

#if previous command is unsuccessful (file not found)

 echo "no such file" ; exit 1

fi

if [-x $filename]

then

 echo The $filename is executable

else

 echo The $filename is not executable

fi

--------------- output:
$ xperm

enter filename:

menu

The menu is executable

$ xperm

enter filename:

phonebook

The phonebook is not executable
__ 8
Modify vince's environment so that he cannot change or delete his .bash_profile

[root@LAB147 root]# chown root /home/vince/.bash_profile

[root@LAB147 root]# ls -al

total 44

drwx------ 4 vince vince 4096 May 14 01:32 .

drwxr-xr-x 9 root root 4096 May 14 03:21 ..

-rw------- 1 vince vince 27 May 14 02:14 .bash_history

-rw-r--r-- 1 vince vince 24 May 1 00:53 .bash_logout

-rw-r--r-- 1 root root 191 May 1 00:53 .bash_profile

-rw-r--r-- 1 vince vince 124 May 1 00:53 .bashrc

...

__ 9
What is the output and what the following commands do?

(a) $ chmod 4755 /usr/teacher/217README2.txt
Let’s find out what was permition for /usr/teacher/217README2.txt file:

-rw-r--r-- 1 katz faculty 5304 Apr 20 18:00 217README2.txt
I have only read permission for this file, so I won't be able to change mode:

$ chmod 4755 /usr/teacher/217README2.txt

chmod: can't change /usr/teacher/217README2.txt: Not owner

(b) $ cd $HOME

 $ find . -print | sort | while read FILE
 > do

 > chgrp sysadm $FILE

 > done

This script takes all files and directories in my home, sorts them, and

changes group to sysadm. Since I still own this directory, I have access to
all files in it.
__ 10 setuid
Write a UNIX commandline that finds all the files on the filesystem that have

setgid permission bit set.

$ ls -alRg / | grep '^......s'

Setgid permission bit set means that in the second set of permissions (for groups)

there is "s" instead of "x". Also I found out in 216-5.2 notes:

[[-g object]] has setgid bit set but couldn't implement it.

Use the find command to determine at least 5 programs in /usr/bin /usr/sbin and /sbin
that are setuid or setgid or both, and owned by root.

find /usr/bin /usr/sbin /sbin \(-perm -4000 -o -perm -2000 \) -user root -ls

 55031 36 -rwsr-xr-x 1 root root 33500 Oct 3 2000 /usr/bin/at

 28142 600 -rwsr-xr-x 1 root root 611132 Oct 30 2001 /usr/bin/gpg

50411 8 -rwsr-xr-x 1 root root 7664 Oct 3 2000 /usr/bin/rsh

 2578 16 -rws--x--x 1 root root 13884 Jul 31 2002 /usr/bin/chfn

 2579 16 -rws--x--x 1 root root 13532 Jul 31 2002 /usr/bin/chsh

 2607 8 -rwxr-sr-x 1 root tty 8116 Jul 31 2002 /usr/bin/write

103581 20 -r-sr-sr-x 1 root lp 16572 Oct 5 2000 /usr/bin/lprm-lpd

 1972 24 -rwsr-xr-x 1 root root 21308 May 8 2001 /usr/bin/crontab

 15936 16 -r-s--x--x 1 root root 12300 Oct 3 2000 /usr/bin/passwd

 1844 36 -rwsr-xr-x 1 root root 36700 Jan 10 2001 /usr/bin/gpasswd

 1842 36 -rwsr-xr-x 1 root root 35004 Jan 10 2001 /usr/bin/chage

 50410 12 -rwsr-xr-x 6 root root 10748 Oct 3 2000 /usr/bin/rlogin

 2266 16 -r-sr-xr-x 1 root root 16236 Dec 16 2000 /sbin/unix_chkpwd

...

Beside -perm -4000 and -perm -2000, we also can use -perm -1000 - sticky bit.

UNIX directory access permissions say that if a user has write permission on a

directory, he can rename or remove files, even files that don't belong to him!

Make sure to set your umask correctly. The owner of a directory can use chmod to fix

permissions of the existing directory. Or, he may be able to leave the directory

writable and set the directory's sticky bit (mode 1000). The only people who can

rename or remove any file in that directory are the file's owner, the directory's

owner, and the superuser.
Most programs run with the user and group access rights of the user who initiated them.
However, it is possible for users to make a program with the setuid or setgid bit set
in its permissions field. When that program runs, the process acquires the access rights
of the owner of the program rather than those of its user.
Say, user N starts the program, but the program runs with the permissions of user X - root.
This is useful whenever it becomes necessary

to grant limited privileges to otherwise unprivileged users. The password changer,

/usr/bin/passwd, is an example. It needs superuser privilege to update the password file.

A setuid program, when run by a normal user, changes their userid to 0 (root) and then

performs tasks at that level. In the same way a normal user can use other utilities listed

above - he can change his finger information (chfn), remove printing jobs which he owns

(lprm-lpd), customize his entry in crontab or at files to run scheduled tasks, encrypt

his messages (gpg), and so on. A big difference with a real superuser is that a normal user

can edit only those entries that correspond to his login name; thus, a normal user cannot

change another user's password, only his own.

However, any setuid script is also a major source of security holes since it may be used
to bypass your system security to gain root privileges. To be on safe side, do not create
or allow setuid shell scripts, especially setuid root. Keep track of all setuid or setgid

programs on your system (with permissions 4000 or 2000).

setuid provides benefits mainly on shared systems where many users with equal rights are

sharing the unprivileged user context. By making your files and folders accessible to the

unprivileged user, you inadvertently make them accessible to all peer users, since they

can operate within the unprivileged context as well. Running your scripts as setuid

deprives your peers from the automatic rights to your data. However, you still are

responsible for restricting file permissions to your data and scripts after going setuid.

If you leave file permissions open and just enhance your script with setuid privileges,

then you will be more threatened than before.

While setuid protects from peer users, it generally offers no increased protection from

external users. Instead, external users who do find a security hole in a script will

now be able to exploit it with your account privileges, rather than the unprivileged

user's rights. Thus, if the threat to your system from external users is greater than

from peer users, avoid setuid. In particular, if you have no peer users, do not go setuid.

