2

216-2

2. [Ex.5, p.213] Write a program called collect that runs in the background

and counts the number of users logged in at the end of each interval and also

the number of processes run during that interval. Allow the interval to be

specified with a -t option with the default of 5 minutes. Use the fact that

the special shell variable $! is set to the process number of the last command

executed in the background and that

 : &

runs a null command in the background. Also make sure that the program

correctly handles the case where the process number loops back around to 1

after the maximum is reached. So

 collect -t 900 > stats &

should start up collect to gather the desired statistics every 15 minutes and

write them into the file stats.

#! /bin/ksh

USAGE=" Usage: collect [-t n]

where n is number of seconds (default is 5 min)"

Purpose: to count the number of users logged in and

the number of processes run during specified interval

#------------------------------------ Commands go here:

i=1

seconds=300

while getopts :t: opt

do

 case $opt in

 t) seconds=$OPTARG;;

 \?) echo "Unknown option \n $USAGE" ; exit 1;;

 esac

done

while ((i<=5))

#for i in 1 2 3 4 5

do

 : &

 pid1=$!

 sleep "$seconds"

 : &

 pid2=$!

 if ((pid2 > pid1)) ; then

 ((numproc = pid2 - pid1))

 else

 ((numproc = 32768 + pid2 - pid1))

 fi

((i++))

#do not need it in for loop

echo "Number of processes during $seconds sec: " $numproc

echo "Number of users logged in: $(who | wc -l)"

done

#END OF collect

-------------------------output:

$ collect -t 4 > stats &

[1] 19533

$ cat stats

Number of processes during 4 sec: 2

Number of users logged in: 6

Number of processes during 4 sec: 1

Number of users logged in: 6

Number of processes during 4 sec: 166

Number of users logged in: 6

Number of processes during 4 sec: 64

Number of users logged in: 6

Number of processes during 4 sec: 3

Number of users logged in: 6

[1]+ Done collect -t 4 >stats

[Notes: to see all processes type pstree or pstree -p]
___ 2

Write a function called lsdate, which lets you list all files that

were last modified on the date given as the argument. If lsdate is

called without any options, just the filenames are output. If the -l

option is specified, the list attributes and the appropriate filenames

are printed in ascending time order and alphabetically for ties.

For example:

$ lsdate 'Jan 25'

feed

file.suffix

file

$ lsdate -l 'Jan 25'

-rwxr-xr-x 1 katz faculty 6 Jan 25 15:15 feed

-rw-r--r-- 1 katz faculty 3 Jan 25 18:38 file.suffix

-rw-r--r-- 1 katz faculty 91 Jan 25 20:43 file

lsdate () {

#set –xv

#just for debug
USAGE="Usage: lsdate() [-l] '<givendate>'

(format as in 'Feb 11' or 'Feb <space>7')"

while getopts :l: option

do

 case $option in

 l) givendate="$2" ; ls -l | awk "/$givendate/" ; return 0;;

 \?) echo $USAGE ; return 1;;

 esac

done

givendate="$1"

ls -l | awk "/$givendate/" | awk '{print $9}'

#set +xv

}
-----------------------------------script works with $OPTARG (not a function though):

#! /bin/sh

USAGE="Usage: sh lsdate [-l] '<givendate>'

(format as in 'Feb 11' or 'Feb <space>7')"

while getopts :l: opt

do

 case $opt in

 l) givendate=$OPTARG ; ls -l | awk "/$givendate/" ; exit 0 ;;

 \?) print "Unknown option \n $USAGE" 1>&2 ; exit 1 ;;

 esac

done

givendate="$1"

ls -l | awk "/$givendate/" | awk '{print $9}'
___ 3

#! /bin/bash

USAGE="Usage: mon3 [-m] [-t n] [-f <filename>] "

mailopt=FALSE

interval=5

runner=`echo $USER`

while getopts :mf:t: option

do

 case $option in

 m) mailopt=TRUE ;;
 t) interval=$OPTARG ;;
 f) filename=$OPTARG

while :

do

if [-f $filename -o -d $filename] ; then

 if ["$mailopt" = FALSE] ; then

 echo "The $filename exists"

 else

 echo "The $filename exists" | mail $runner

 fi

fi

sleep $interval

done ;;

 *) echo "Invalid switch -$OPTARG"

 echo "$USAGE" ; exit 1 ;;

 esac

done

