2

216-1

Explain what these programs are producing (in general and statement by statement).
$ awk '

BEGIN { for(i = 1; i <= 200; i++)

print int(101*rand())

}

' |

awk -f program

$ cat program

{ x[int($1/10)]++ }

END{ for(i = 0; i < 10; i++)

printf(" %2d - %2d: %3d %s\n",

10*i, 10*i+9, x[i], rep(x[i], "*"))

 printf("100: %3d %s\n", x[10], rep(x[10], "*"))

}

function rep(n,s,t) {

while (n-- > 0)

t = t s

return t

}
#--output:

 0 - 9: 21 *********************

 10 - 19: 13 *************

 20 - 29: 13 *************

 30 - 39: 16 ****************

 40 - 49: 24 ************************

 50 - 59: 29 *****************************

 60 - 69: 19 *******************

 70 - 79: 23 ***********************

 80 - 89: 22 **********************

 90 - 99: 19 *******************

100: 1 *

 1 2 3 4 5

#field numbers

Output displays a numeric and graphical representation of frequency of

the randomly generated numbers - histogram - given for 11 groups.

1) In the BEGIN, awk performed initialization actions, it generated 200

random integers from 0 to 100 (inclusive) with step = +1. Those numbers

have been then passed to 'program' file for processing.

To the left from the frequency histogram, shown as the strings of stars,

there is a numeric representation of frequency; total of column 4

is equal to 200 - 200 numbers have been generated, indeed.

2) { x[int($1/10)]++ }

Array "x" counts the number of generated numbers in a given group.

It has the integer numeric value inside the brackets.

Say, for example, a number 5 was passed from BEGIN; it falls into group 0-9

(element #0), and the value of variable x[0] is now 1. Every time another number

between 0 and 9 is generated, the value of x[0] is incremented by 1.

$1 represents the numbers being passed from BEGIN.

It might be a user's input instead, just like this:

$ cat | awk -f program

2

2

6
2

25

24
70

ctrl+d to end

 0 - 9: 4 ****

 10 - 19: 0

 20 - 29: 2 **

 30 - 39: 0

 40 - 49: 0

 50 - 59: 0

 60 - 69: 0

 70 - 79: 1 *

 80 - 89: 0

 90 - 99: 0

100: 0

 #--Katz: how index formed?

3) END{ for(i = 0; i < 10; i++)

END is a postprocessing action sequence such as formatting output.

The for loop with index i from 0 to 9 with +1 incrementing produces

10 groups of numbers: 0 - 9 (that is 10*0 - 10*0+9),

 10 - 19 (that is 10*1 - 10*1+9), and so on.

Total number of elements, created by the for loop, is 10 - from 0 to 9,

and one more element (11), for a special occasion of number 100,

is written separately.

Total in each group (field 4) represents one element of the array x[i];

for i=0 x[i]=21, for i=1 x[i]=13, and so on.

%2d - print two-digit integer, right justified.

%s\n - print a string (stars in this case) with newline at the end.

- and : are the ordinary characters; used for better readability.

Beside formatting, the END statement also calls the function rep

to print the stars.

4) Function "rep" with n, s, and t variables processes the numbers in loop.

function rep(n,s,t) {
return string of n s's

while (n-- > 0)

t = t s

return t

}

n is decremented by 1, and while n > 0, the function returns a string of n stars

in the field 5 - that's the program is written for. Say, in the first group you

have n=21, s is *, and t is ********************* (a string of 21 stars).

printf(" %2d - %2d : %3d %s\n",

 10*i, 10*i+9, x[i], rep(x[i], "*"))
i is 0-9 inclusive

function rep(21 n s)

Value of x[i] is passed as n

"*" is passed as s (s is only 1 star)

t is declared as return (t is 'all' stars in each group)

t = t s # "*" is concatenated with the rest stars in t for every n

