5

JAVA CIS-142, 143

Data types

Double
+-1.7E308=1.7x10308

floating point

Float
+-3.4E38=3.438

(decimal)

long
8

int
4

short
2=16 bits
216=65536
+-32768

whole numbers

byte
1=8 bits
28=256

+-128

Character is only one char in single quotes
String is several chars in double quotes

Objects (instance)
Variable can hold primitive data type (char), or it can hold object.

Pen p;

String s;

s = new String("hello");
or

s = "hello";

import java.text.*;
DecimalFormat myFormat;

myFormat = new DecimalFormat();
 or
DecimalFormat myFormat = new DecimalFormat();
just like in that:

int x;

x=5;

or

int x = 5;

import java.util.*;

Random rand;

//variable ‘rand’ is big enough to hold the Random class

rand = new Random();
//initialization

DecimalFormat myFormat;

I have to create instance of the DecimalFormat class, what is myFormat
In order to use this class;

I do not have to do it with the Math class since it’s static:
int m = Math.min(3,5);

import cs1.Keyboard;

Keyboard key;

key = new Keyboard();

int x;

x = key.readInt();

Keyboard.readInt();

Static method is accessed through Class

Method is static if it’s in API (Favorites (Java (Java 2 Platform SE v1.4.2)

Nonstatic method is accessed through object (or instance) of that class.
Say, a particular student A.Smith is an instance of the student class.

DecimalFormat() –it’s a method. It’s a constructor object
Casting – explicit conversion of one data type to another

double d = 1.5;

float f = (float)d;

Casting is powerfull, but be careful with it if you convert larger data type to the smaller one.

//examples of casting
long bigNum = 123456789;

short littleNum = (short)bigNum;

System.out.println(“LittleNum = “ + littleNum);

Structure of the code:

-Sequence

-Selection/decision

-Iteration

a=5
//assignment operator
a==5
//test to see if value of ‘a’ is equal to 5 and return true if it is

LOOP

While loop can be used if we need to evaluate user’s input, say

while (answer = Y).

The ‘for’ loop if used only for counting. For ex, print something 10 times:
for (int c=1; c<=10; c++)

{

System.out.println (c + “ Tina”);

}

Class name (Student)

[object is an instance of the class, say A.Smith]

properties of the class, or instance variables
(characteristics that describe a class)

methods of the class

(what class can do – action oriented)

Method is an instance of the class
Property/attribute/instance variables/instance data/state

Color: blue

size : small

public class Car

//class header
{

//declare instance variables

private String color;

//define methods

public void drive (String dir)

//void doesn’t return value

{

S.o.p. (“Driving” + dir);

}

}

Access modifier:

- private

- public

Constructor method does 2 things:

- Creates instance of the class in memory.
- Initializes the instance variables of the class

 (numbers to 0, strings to null, Boolean to false, char to single space)

The name of the constuctor method is the same as the name of the class
(must begin with capital letter).

public Car()

//constructor method
{

//(there is no return type - no void, or int, or double...)

color=”white”;

year=2004;

}

public class Drive

{

public void drive (String)

{

Car c1 = new Car();

c1.drive(“NE”);

c1.turn(“left”);

c1.brake();

}

}

main() is always public.
In constructor, we will create an instance of a method.
A default constructor has no parameters (nothing coming from the user).

A parametrized constructor can have any number of parameters (but it’s NOT a default).

Having more than one method with the same name but different parameter list is called overloading.
Instance variables should be declared private (you want to keep your data private).

You do not want anybody from outside to change, say, you address.
You cannot change your grade either. You can access your private data through public method, and that method will deside to accept your changes or not.

Information (data) hiding is called encapsulation.

Instance variables should be initialized in a constructor method.

Method can return at most ONE value.
//is it a function then?
Constructor is a method, and it doesn’t have a return value.

To create one instance of Banana class, type:
Banana oneBanana = new Banana();

//create new method (oneBanana) and initialize it
ClassName.staticMethodName();

JOptionPane.showInputDialog(Str);

Keyboard.readInt();

Math.max(3,5);

objectName.nonStaticMethod();

Car c1 = new Car();

c1.drive();

DecimalFormat df = new DecimalFormat(“0000.00”);
df.format(12.345);
Random r = new Random();

r.nextInt();

Static method associates with CLASS [JOptionPane.showInputDialog(Str);], while

nonstatic method associates with instance/object, [what is c1 in Car c1 = new Car();]
and has to be called from that object -- c1.drive();
In other words, nonstatic method has to be attached to particular object (reference).

public class Car1

{

int miles, total;

String dir;

public static void main(String[] args)

{

Car1 honda = new Car1();

honda.drive(10, "south");

honda.drive(40, "west");

System.out.println("\n");

Car1 shevy = new Car1();

shevy.drive(100, "east");

shevy.drive(200, "west");

//Car1.drive(100, "west");
//--cannot do this since drive()

 //doesn’t know what car to add to.

public void drive (int miles, String dir)

{

total+=miles;
// miles will be totaled to the particular car c1

//(since we called this method from object c1)

System.out.println("Driving " +dir+ " " +miles+ " miles");

System.out.println(" Total miles " +total);

}

}
--------output:

Driving south 10 miles

 Total miles 10

Driving west 40 miles

 Total miles 50

Driving east 100 miles

 Total miles 100

Driving west 200 miles

 Total miles 300

//-----------now miles is a static variable, and drive() is static method:
public class Car2
{

static int miles, total;

String dir;

public static void main(String[] args)

{

drive(10, "south");

drive(40, "west");

drive(100, "east");

drive(200, "west");

}

public static void drive (int miles, String dir)

{

total+=miles;

// miles will be totaled to the whole class

System.out.println("Driving " +dir+ " " +miles+ " miles");

System.out.println(" Total miles " +total);

}

}
----output:

Driving south 10 miles

 Total miles 10

Driving west 40 miles

 Total miles 50

Driving east 100 miles

 Total miles 150

Driving west 200 miles

 Total miles 350
Since variable miles is static in this method, now we can call drive() from the Class,

and miles will be totaled to the whole class Car.
--

//parametrized constructor (example)
public GPACalc_constr(String name, double gr1, double gr2, double gr3, int cr1, int cr2, int cr3)

{

 this.name = name; //assign input 'name' (from calling class) to local private variable 'name'

 this.gr1 = gr1;
 //'this' refers to the object instance (student1) that called the method
 ...

}
-------------ARRAY ---------------------------------
double[] salary = new double[5];

for (i=0; i <= age.length; i++) {
 //if you do not know how many elements in array

 S.o.p. age[i];

}

int[] nums = new int[5];

We created array Student having 32 elements (from 0 to 31); all they have NULL value.

We cannot populate an element [0] with “Ahmed” because we didn’t create an object yet
(array has only memory allocation --?).
Student[] st1 = new Student[32];
//Create an object. ‘Student’ is a type of array (like String).
st1[0].setName (“Ahmed”);

Parallel arrays:

String[] name = {“Bob”, “Lou”, “Ann”};
int[] sid = {3, 4, 7};
double[] gpa = {2.9, 4.0, 3.7};

If we find information in one array, we can find corresponding information in the other arrays.
myMethod(salary[3]) //passing a copy of value; value will not be changed in calling method
myMethod(salary)
 //passing address of the array (passing by reference);

 //changes of value will be saved in array.

int[] salary = {32500, 45950, 24675, 23000, 29800};

int temp;

for (int i = 0; i < salary.length; i++)

for (int j = 0; j < salary.length-i-1; j++)

if (salary[j] > salary [j + 1])

{
//swap

temp = salary[j];

salary[j] = salary[j + 1];

salary[j + 1] = temp;

}

for (int i = 0; i < salary.length; i++)

System.out.print (salary[i] + "\t");

System.out.println();
salary–i–1

- 1 because we do not want to go beyond the array (error: out of boundary)

- i to move from the last element to left

There are 5 elements in the salary array.

i=0; j=0, run j-loop until j=4
salary – i – 1
i=1; j=0, run j-loop until j=3

i=2; j=0, run j-loop until j=2
i=3; j=0, run j-loop until j=1

i=4; j=0, run j-loop until j=0 (exit the j-loop

String s1=”hello”;
String s2=”hi”;
if (s1 > s2)

//here we compare addresses, not the strings

--Passing arguments by reference:
When you’re passing an object variable to method, you’re passing the reference (address). If value of variable is changed in the child method, it will also be changed in the calling parent method (main) since both variables (in the child and parent methods) refer to the same memory address.
--and by value:

When you’re passing by value, you’re passing a copy of variable’s value. Any changes of value in the child method will not affect the value in the calling (main) method since every variable refer to its own memory location.
If you are passing an array object, you’re passing by reference (address): aMethod(nums);
If you are passing the element of array, you’re passing a copy of value of that element:

aMethod(nums[0]);
int[] nums = {10,11,12};

main

{

aMethod(nums);

// passing parameter by reference

aMethod(int[] nums);
// passing parameter by value
{

nums[0] = 5;

}

}

Passing parameter by reference

and by value

 F15099 C20177 (memory address)

 A A

address- F15099 Hello - copy of value

 AABBCC

 X X

----------------- Applet
import javax.swing.*;
//graph. interface are in the swing components

public class Myapplet extends JApplet

init()

//always executed; we have to override it

start()

stop()

//when window minimized, or you use another window

destroy()
//browser closed

paint()

No main method in applets, but at least one method from above must be executed.

Packages are folders, and ... are files.

ctrl+1 to compile, and ctrl+3 to run applet.
-------------------------- Sort
Bubble sort: To sort an array of 8 elements, program makes 7 passes.
Linear sort: slow

Binary sort: number between 1 and 60? 30?-higher. 45?-lower. 37?-that’s it (very fast).
Selection sort: find a minimum and swap it with the 1st element, next min swap with the 2nd el.

Quick sort is recursive. It’s very fast and efficient, but more complex. Pick one element (pivot), say middle one, and put everything lower on left side, and the rest – on the right. Then the Quick sort calls itself, and picks a pivot on the left side…

Polymorphism – one superclass method can have many results/forms (behave differently) depending on the type of subclass object that is being referenced.
Animal oliver = new Cat();
oliver.talk();

// Cat’s emplementation of the Animal class.

// oliver calls Animal.talk() method that has a pointer to Cat().

Cat() maybe several levels deep.

The talk() method is defined in superclass.
We have to assign an object of subclass to variable of superclass (Cat() to Animal oliver).

If Animal.talk() doesn’t exist, then oliver.talk() cannot be used.
Animal oliver = new Cat();

//Cat() is-a Animal, and Animal has-a Cat()
variable

object

type

type

(static)

(dynamic)

Animal[] pets = new Animal[2];
pets[0] = new Dog();

pets[1] = new Cat();

for (int i=0; i<pets.length; i++)

{

 pets[i].eat();

 pets[i].talk();
}

S.o.p.(“I’m a “ + pets[i].getType());
Depending on the type of object pets[i], different methods getType() will be called.

Downcasting – define type of variable of superclass to type of variable of subclass.
Abstact classes

Abstact method defines subclass method (it has control over subclass).
Hello

Student

name

id

dob

register()

drop()

study()

class CalcUse

+ main()

class CalcConstructor

- numButtons

- type

- color

+ int add (int, int)

+ dbl add (dbl, dbl)

+ String toString ()

+ void someMethod()

Private methods;

are not accessible

from main()

Public methods;

direct access from

main()

The method add is

overloaded.

Hello

Hello

