1

216
Consider the following Korn Shell Script:

 $ cat shuffle

 #! /bin/ksh

 USAGE="Usage: Shuffle"

 # Purpose: Perform perfect shuffles of pairs of files.

 read inFiles[0]?"Name a file that you want to shuffle: "

 [[${inFiles[0]} == "." || ${inFiles[0]} == "q"]] && exit 1

 read inFiles[1]?"Name another file that you want to shuffle with the first: "

 [[${inFiles[1]} == "." || ${inFiles[1]} == "q"]] && exit 2

 [[x${inFiles[0]} == "x" || x${inFiles[1]} == "x"]] && { print -u2 \

 "Enter exactly two file names. Use quotes if necessary."; exit 3; }

 exec 3< "${inFiles[0]}"

 exec 4< "${inFiles[1]}"

 read outFile?"Where do you wnat the shuffled output? "

 exec 5> "$outFile"

 IFS=

 while read -ru3

 do

print -u5 "$REPLY"

read -ru4

print -u5 "$REPLY"

 done

 IFS=$' \t\n'

 exec 3<&-

 exec 4<&-

 exec 5>&-

 print

 #END OF shuffle

 a) Explain on a statement by statement basis what the script is doing.

See under (h)

 b) What are four things the user could type to cause this script to

 stop executing?

- printing . istead a filename

- printing q istead a filename

- newline instead of a filename (press Enter)

- ctrl+c

 c) What is the purpose of the print command at the end of the script?

I used the echo command instead since the HCC system does not support print.

It didn't make any difference when I deleted the echo at all.

 d) What happens if the user enters the name of a non-existent file for

 either of the two files to be shuffled?

User will get error message while inputing non-existing file:

/home/cis/asmith/shuffle: file10: No such file or directory

Also another one error message on the command exec 4< "${inFiles[1]}" :

/home/cis/asmith/shuffle: 4: Bad file descriptor

 e) What happens if the user enters the name of a file that already exists

 as an output file?

The content of that file will be overwritten with the new output.

 f) What happens if the user enters the name of one of the input files

 as the name of the output file?

input1: file1

input2: file2

output: file1
--weird shuffle of only file2 (no entries from file1)

input1: file1

input2: file2

output: file2
--output file2 was emptied

 g) What happens if the first input file is shorter than the second?

Excessive lines from the second file won't be redirected to output file.

Say, if the 1st file has 3 lines, and the 2nd - 4 lines, only first three lines

will be shuffled and redirected to output file.

 h) Modify the script so that the output always contains all lines from both files.

####### The read command does not support -u option in restricted shell in college,
####### neither supports inFiles[0]? , so script was modified to get around.
__

 #! /bin/ksh

 USAGE="Usage: shuffle"

 # Purpose: Perform perfect shuffles of pairs of files.

#Prompt user to type first input filename, store results in inFiles[0], and read it
 #read inFiles[0]?"Name a file that you want to shuffle: "

 echo "Name a file that you want to shuffle: "

 read inFiles[0]

#If either . or q entered instead of filename1, script will stop execution.

 [[${inFiles[0]} == "." || ${inFiles[0]} == "q"]] && exit 1

#Prompt user to type a second input filename; store results in inFiles[1], and read it

 #read inFiles[1]?"Name another file that you want to shuffle with the first: "

 echo "Name another file that you want to shuffle with the first: "

 read inFiles[1]

#If either . or q entered instead of filename1, script will stop execution

 [[${inFiles[1]} == "." || ${inFiles[1]} == "q"]] && exit 2

#if either filename is not entered, print error message to STDERR (fd2)

#(if filename is empty string, when x == x)

 [[x${inFiles[0]} == "x" || x${inFiles[1]} == "x"]] && { echo >2 \

 "Enter exactly two file names. Use quotes if necessary."; exit 3; }

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX beginning of fix

#Here is a problem: the script worked only while loop reads input from file1 (fd3).

#Fix: if the 1st file is shorter than the 2nd one, swap them.

num_lines1=$(cat ${inFiles[0]} | wc -l)

#how many lines in the 1st file

num_lines2=$(cat ${inFiles[1]} | wc -l)

#how many lines in the 2nd file

if ((num_lines1 > num_lines2 || num_lines1 == num_lines2)) ; then

 exec 3< "${inFiles[0]}"
#open 1st file, create alias - file descriptor 3 - for this file

 exec 4< "${inFiles[1]}"
#open 2nd file, assign fd4 to this file

else

#swap files

 exec 3< "${inFiles[1]}"

 exec 4< "${inFiles[0]}"

fi
XXXXXXXXXXXXXXXXXXXXXXXXXXXXX end of fix

#Prompt user to type the output filename

 #read outFile?"Where do you wnat the shuffled output? "

echo "Where do you wnat the shuffled output? "

read outFile

 exec 5> "$outFile"

#open the outFile, assign fd5 to that file; everything sent

 #to fd5 will automatically be forwarded to outFile

 IFS=

 # -------------- while loop didn't work in college, so it was fixed

 while read

#while read from 1st input file (fd3)

 do

 echo >&5 "$REPLY"

#write output to fd5

 read <&4

#read input from fd4

 echo >&5 "$REPLY"

#write output to fd5

 done <&3

#read input from fd3

 IFS=$' \t\n'

#input field separator is the tab key and newline

 exec 3<&-

#close the input fd3

 exec 4<&-

#close the input fd4

 exec 5>&-

#close the output fd5

 echo

#print blank line

 #END OF shuffle

