2

1. Write a Korn or Bash Function named synchro that takes two directory

arguments and synchronizes the two directories' contents. Verify that

both arguments exist, are directories and are writeable by your function,

before proceeding. The purpose of this function is to make both directories

contain all the same files. If the same file exists in both directories,

copy the newer one over the older one.
The content of the syn file:
synchro () {

USAGE="Usage: . syn \n

 synchro <dir1> <dir2>"

if [["$#" != 2 || ! -d "$1" || ! -d "$2"]] ; then

 echo -e $USAGE ; return 1

fi

if [[! -w "$1"]] ; then

 echo -e The first directory is unwritable. Cannot synchronize ; return 1

fi

if [[! -w "$2"]] ; then

 echo -e The second directory is unwritable. Cannot synchronize ; return 1

fi

cd $1

find * -print > ../list1

cd ../$2

find * -print > ../list2

cd ..

#--compare dir1 with dir2

read each line of list1

while read name

do

 # use grep to find all occurrences of $name in list2

 # use -c for matched-lines count and -x for exact match

occur=$(grep -cx $name list2)

if ["$occur" = 0] ; then

#if $name isn't in list2 (occurrence = 0)
 echo $1/$name not found in $2, make its copy from $1

 if [-d "$1/$name"]; then

#if $1/$name is a directory

 cp -pr $1/$name $2/$name

 else

 cp -p $1/$name $2/$name

 fi

elif ["$occur" = 1] ; then
#if file exists in both directories,
 cmp -s $1/$name $2/$name 2> /dev/null
#compare the files

 # $? is a variable that holds a result of exit code

of the previous command, so if it's 1 (false) do a copy

 if [$? = 1] ; then
#file contents are different

 echo "$1/$name and $2/$name are different, update old with new"

 if [$1/$name -nt $2/$name] ; then
$1/$name is newer than $2/$name

 if [-d $1/$name] ; then

#if $1/$name is a directory

 cp -r $1/$name $2/$name

#copy it's content to directory $2/$name

 else

 cp -f $1/$name $2/$name

 fi

 elif [$2/$name -nt $1/$name] ; then
 # $2/$name is newer than $1/$name

 if [-d $2/$name] ; then

 cp -r $2/$name $1/$name

 else

 cp -f $2/$name $1/$name

 fi

 fi

 fi

fi

done < list1

#get input from list1

#---compare dir2 with dir1

read each line of list2

while read name

do

use grep to find all occurrences of $name in list1

use -c for matched-lines count and -x for exact match
occur=$(grep -cx $name list1)

if ["$occur" = 0]
#if $name isn't in list1, make a copy

then

 echo $2/$name not found in $1, make its copy from $2

 if [-d "$2/$name"] ; then

 cp -pr $2/$name $1/$name

 else

 cp -p $2/$name $1/$name

 fi

fi

done < list2

#get input from list2

rm -f list1 list2

echo Synchronizing of $1 and $2 complete

}
--How to use the function:
Type in on command line:

$. syn

#tells the shell that there is a function in the syn file
$ synchro dir1 dir2

#function execution

#Katz used cp -p instead of cp to preserve timestamps

short version:

The content of the syn_u file:
synchro_u () {

USAGE="Usage: synchro_u <dir1> <dir2>"

if [["$#" != 2 || ! -d "$1" || ! -d "$2"]] ; then

 echo -e $USAGE ; return 1

fi

if [[! -w "$1"]] ; then

 echo -e The first directory is unwritable. Cannot synchronize ; return 2

fi

if [[! -w "$2"]] ; then

 echo -e The second directory is unwritable. Cannot synchronize ; return 3

fi

cp -pru $1/* $2
-u option (update) makes this version so short
cp -pru $2/* $1

}

 -p preserve mode,ownership,timestamps

 -r copy directories recursively

 -u update: copy only when the SOURCE file is newer than the destination file

 or when the destination file is missing

--How to use the function:
Type on command line:

$. syn_u

#tells shell that there is a function in the syn_u file
$ synchro_u dir1 dir2

#function execution

