1

Consider the following line numbered Shell script:
#! /bin/sh

1 :

2 # @(#) program V1.0 Description Author

3

4 trap "echo you\'re DETECTED!!; stty echo; kill $$" 2 15

5

6 PATH=/bin:/usr/bin

7 SECRET="secret"

8

9 stty -echo

stty -a to see all settings;

10 echo -n "string: "

#was before: echo "string: \c"

11 read BUF1

12 echo

13

14 while :

15 do

16 # BUF2=`line < /dev/tty`

16A read -e BUF2 < /dev/tty

17 if ["$BUF2" = "$BUF1"]

18 then break

19 elif ["$BUF2" = "$SECRET"]

20 then break

21 fi

22 echo -en "\a"

#was before: echo "\007\c"

23 done

24 stty echo

25 # END of program

a) What is the script doing overall?

It's a program to lock out a computer session while user is absent.

The user can type a script name and a secret word (to BUF1) and leave a work

place; he must retype it again (to BUF2) to unlock the machine.

The string "secret" also works. Probably, only sysadmin knows this word

(in case if user forgot his locking password).

Pretend that a stranger types something and nothing happend on the screen.

The screen looks like frozen, urging the intruder to press ctrl+c.

As soon as he does it in atempt to stop the process, he will initiate

infinite loop, dispaying “You’re DETECTED!!” with beeps and whistles.

b) What is the significance of the trap command (line 4) in this script?

The trap command, when triggered, will keep the user in infinite loop if

signals 2 (interrupt via CTRL-C) or 15 (software termination via the kill command)

are essued to the process. If it detects either of these signals, it will

execute the echo command, which displays “You’re DETECTED!!”

c) In line 4, why isn't signal 3 (or 9) used?

Signals 3 (SIGQUIT) or 9 (SIGKILL) can't be trapped; they will not trap the

user in the loop, just quit a running program. Trick is to scare the intruder

away and prevent the system from the further cracking.

d) Why is the PATH variable specified in line 6?

Katz:
It limits commands to just those 2 directories, /bin and /usr/bin

e) What does line 9 do?

It turns echo off for the terminal - nothing will be displayed on the screen.

f) Describe the logic of the while loop.

When user typed the script name and set the protecting password, the while loop

will wait forever until that password or the $SECRET string is given.

g) Why is /dev/tty used rather than STDIN?

Katz: STDIN can overflow and give a shell prompt

h) What should the permissions of this program be?

Katz: r-x for owner only

i) Fix the echo command in lines 10 and 22 so that a new line is not produced.

 In line 22, replace the ascii \007 with a symbolic alert sound.

10 echo -n "string: "
#was before: echo "string: \c"

22 echo -en "\a"

#was before: echo "\007\c"

---------------output:

program

string: redhonda
#redhonda is my password; if i didn't retype it when return,

 a cursor will look like frozen. Ctrl+c sets off an infinite loop:

You’re DETECTED!!

You’re DETECTED!!

Ctrl+<pause/break> to stop (and terminate a whole session)

or kill this process from another consol window.
