FACEV - Faculdade de Ciências Econômicas de Vitória
Introdução à Estatística Econômica - 2º ano
Prof. Paulo Cézar Ribeiro da Silva
* A U L A NET - 03 *
AMOSTRAGEM
MÉTODOS PROBABILÍSTICOS
Exige que cada elemento da população possua determinada probabilidade de ser selecionado. Normalmente possuem a mesma probabilidade. Assim, se N for o tamanho da população, a probabilidade de cada elemento será 1/N. trata-se do método que garante cientificamente a aplicação das técnicas estatísitcas de inferências. Somente com base em amostragens probabilísticas é que se podem realizar inferências ou induções sobre a população a partir do conhecimento da amostra.
É uma técnica especial para recolher amostras, que garantem, tanto quanto possível, o acaso na escolha.
.
AMOSTRAGEM CASUAL OU ALEATÓRIA SIMPLES:
É o processo mais elementar e frequentemente utilizado. É equivalente a um sorteio lotérico. Pode ser realizada numerando-se a população de 1 a n e sorteando-se, a seguir, por meio de um dispositivo aleatório qualquer, x números dessa sequência, os quais corresponderão aos elementos pertencentes à amostra.
Exemplo: Vamos obter uma amostra, de 10%, representativa para a pesquisa da estatura de 90 alunos de uma escola:
1º - numeramos os alunos de 1 a 90.
2º - escrevemos os números dos alunos, de 1 a 90, em pedaços iguais de papel, colocamos na urna e após mistura retiramos, um a um, nove números que formarão a amostra.
OBS: quando o número de elementos da amostra é muito grande, esse tipo de sorteio torna-se muito trabalhoso. Neste caso utiliza-se uma Tabela de números aleatórios, construída de modo que os algarismos de 0 a 9 são distribuídos ao acaso nas linhas e colunas.
.
.AMOSTRAGEM PROPORCIONAL ESTRATIFICADA:
Quando a população se divide em estratos (subpopulações), convém que o sorteio dos elementos da amostra leve em consideração tais estratos, daí obtemos os elementos da amostra proporcional ao número de elementos desses estratos.
Exemplo: Vamos obter uma amostra proporcional estratificada, de 10%, do exemplo anterior, supondo, que, dos 90 alunos, 54 sejam meninos e 36 sejam meninas. São portanto dois estratos (sexo masculino e sexo feminino). Logo, temos:
SEXO | POPULACÃO | 10 % | AMOSTRA |
MASC. | 54 | 5,4 | 5 |
FEMIN. | 36 | 3,6 | 4 |
Total | 90 | 9,0 | 9 |
Numeramos então os alunos de 01 a 90, sendo 01 a 54 meninos e 55 a 90, meninas e procedemos o sorteio casual com urna ou tabela de números aleatórios.
.
AMOSTRAGEM SISTEMÁTICA:
Quando os elementos da população já se acham ordenados, não há necessidade de construir o sitema de referência. São exemplos os prontuários médicos de um hospital, os prédios de uma rua, etc. Nestes casos, a seleção dos elementos que constituirão a amostra pode ser feita por um sistema imposto pelo pesquisador.
Exemplo: Suponhamos uma rua com 900 casas, das quais desejamos obter uma amostra formada por 50 casas para uma pesquisa de opinião. Podemos, neste caso, usar o seguinte procedimento: como 900/50 = 18, escolhemos por sorteio casual um número de 01 a 18, o qual indicaria o primeiro elemento sorteado para a amostra; os demais elementos seriam periodicamente considerados de 18 em 18. Assim, suponhamos que o número sorteado fosse 4 a amostra seria: 4ª casa, 22ª casa, 40ª casa, 58ª casa, 76ª casa, etc.
AMOSTRAGEM POR CONGLOMERADOS (OU AGRUPAMENTOS)
Algumas populações não permitem, ou tornam extremamente difícil que se identifiquem seus elementos. Não obstante isso, pode ser relativamente fácil identificar alguns subgrupos da população. Em tais casos, uma amostra aleatória simples desses subgrupos (conglomerados) pode se colhida, e uma contagem completa deve ser feita para o conglomerado sorteado. Agrupamentos típicos são quarteirões, famílias, organizações, agências, edifícios etc.
Exemplo:
Num levantamento da população de determinada cidade, podemos dispor do mapa indicando cada quarteirão e não dispor de uma relação atualizada dos seus moradores. Pode-se, então, colher uma amostra dos quarteirões e fazer a contagem completa de todos os que residem naqueles quarteirões sorteados.
MÉTODOS NÃO PROBABILÍSITCOS
São amostragens em que há uma escolha deliberada dos elementos da amostra. Não é possível generalizar os resultados das pesquisas para a população, pois as amostras não-probabilísticas não garantem a representatividade da população.
AMOSTRAGEM ACIDENTAL
Trata-se de uma amostra formada por aqueles elementos que vão aparecendo, que são possíveis de se obter até completar o número de elementos da amostra. Geralmente utilizada em pesquisas de opinião, em que os entrevistados são acidentalmente escolhidos.
Exemplos: Pesquisas de opinião em praças públicas, ruas movimentadas de grandes cidades etc.
AMOSTRAGEM INTENCIONAL
De acordo com determinado critério, é escolhido intencionalmente um grupo de elementos que irão compor a amostra. O investigador se dirige intencionalmente a grupos de elementos dos quais deseja saber a opinião.
Exemplo: Numa pesquisa sobre preferência por determinado cosmético, o pesquisador se dirige a um grande salão de beleza e entrevista as pessoas que ali se encontram.
AMOSTRAGEM POR QUOTAS
Um dos métodos de amostragem mais comumente usados em levantamentos de mercado e em prévias eleitorais. Ele abrange três fases:
1ª - classificação da população em termos de propriedades que se sabe, ou presume, serem relevantes para a característica a ser estudada;
2ª - determinação da proporção da população para cada característica, com base na constituição conhecida, presumida ou estimada, da população;
3ª - fixação de quotas para cada entrevistador a quem tocará a responsabilidade de selecionar entrevistados, de modo que a amostra total observada ou entrevistada contenha a proporção e cada classe tal como determinada na 2ª fase.
Exemplo: Numa pesquisa sobre o "trabalho das mulheres na atualidade". Provavelmente se terá interesse em considerar: a divisão cidade e campo, a habitação, o número de filhos, a idade dos filhos, a renda média, as faixas etárias etc.
A primeira tarefa é descobrir as proporções (porcentagens) dessas características na população. Imagina-se que haja 47% de homens e 53% de mulheres na população. Logo, uma amostra de 50 pessoas deverá ter 23 homens e 27 mulheres. Então o pesquisador receberá uma "quota" para entrevistar 27 mulheres. A consideração de várias categorias exigirá uma composição amostral que atenda ao n determinado e às proporções populacionais estipuladas.
.
EXERCÍCIOS:
1- Uma escola de 1º grau abriga 124 alunos. Obtenha uma amostra representativa correspondente a 15% da população, utilizando a partir do início da 5ª linha da Tabela de números aleatórios.
2- Tenho 80 lâmpadas numeradas numa caixa. Como obtemos uma amostra de 12 lâmpadas ?
3- Uma população encontra-se dividida em três estratos,com tamanhos, respecivamente, n1= 40, n2= 100 e n3= 60. Sabendo que, ao realizar uma amostragem estratificada proporcional, 9 elementos da amostra foram retiratos do 3º estrato, determine o número de elementos da amostra.
4- Mostre como seria possível retirar uma amostra de 32 elementos de uma população ordenada formada por 2.432 elementos. Na ordenação geral, qual dos elementos abaixo seria escolhido para pertencer a amostra, sabendo-se que o elemento 1.420º a ela pertence ?
1.648º , 290º , 725º , 2.025º ou 1.120º