Atwood and Modified Atwood Machines Unit V Prelab Worksheet

Purpose:

To determine mathematical models for the relationship between net force (total force or \mathbf{F}_{net}) and acceleration (**a**) of a system and between total mass (\mathbf{m}_{tot}) and the acceleration (**a**) of a system.

Part 1: Atwood Machine

a and F_{Net} are both vectors acting in the same direction.

m_{tot} is a scalar.

m2 > m1

If you are doing this experiment with actual equipment instead of a simulation, you can use cups to hold masses or hooks with slotted masses for m₂ and m_{1.} Acceleration can be measured with a photogate and a smart pulley

1. Draw a freebody diagram for \mathbf{m}_1 and \mathbf{m}_2 .

$\mathbf{m}_1 \mathbf{m}_2$

2. On the two freebody diagrams above, rank the forces from largest to smallest.

3. If you know the mass, how do you calculate the weights of \mathbf{m}_1 and \mathbf{m}_2 ? (formula?)

4. All a pulley does is change the direction of the force (not its magnitude). What is the net force (total force) acting on the <u>whole system</u> (\mathbf{m}_1 and \mathbf{m}_2 together) that causes the acceleration? Explain. Think of \mathbf{m}_1 and \mathbf{m}_2 as having a tug-of-war.

5. What would be the acceleration of the system if $\mathbf{m}_1 = \mathbf{m}_2$? Describe the possible motions of the system.

6. Write an equation for the net force (\mathbf{F}_{net}) on the whole system in terms of \mathbf{m}_1 , \mathbf{m}_2 and \mathbf{g} (9.8 N/kg).

7. If $\mathbf{m}_{tot} = \mathbf{m}_1 + \mathbf{m}_2$, how can you hold the total mass constant, but change \mathbf{F}_{net} ?

8. How can you hold \mathbf{F}_{net} constant but change \mathbf{m}_{tot} ?

Part 2: Modified Atwood machine

1. If you were to do this experiment, what are two ways to reduce the friction between the surface and the sliding block?

2. Draw a freebody diagram for the sliding block and for the hanging block (assume friction is negligible).

sliding block hanging block

3. Which forces in the freebody diagrams above <u>do not</u> affect the acceleration in the direction whown? Explain.

- 4. Write an equation for \mathbf{F}_{net} on the whole system (sliding and hanging block together).
- 5. What is the total mass (\mathbf{m}_{tot}) of the system? How can you hold \mathbf{m}_{tot} constant and change \mathbf{F}_{net} ?
- 6. How can you hold \mathbf{F}_{net} constant and change \mathbf{m}_{tot} ?