2.14

Var	Given value	Units	Description
$\Delta x_{\rm cw}$		m	clockwise distance
t _{cw}	60	s	clockwise time
$\Delta x_{\rm ccw}$		m	counterclockwise distance
t _{ccw}	120	S	counterclockwise time
V _{ccw,ave}	-4	m s	average counterclockwise velocity
V _{cw,ave}	6.0	m s	average clockwise velocity
Δx		m	distance from starting position

$$V_{\rm cw,ave} = \frac{\Delta x_{\rm c}}{t_{\rm cw}}$$

$$\Delta x_{\rm cw}$$

$$\Delta x_{\rm cw}$$

$$\Delta x_{\rm cw}$$

$$\Delta x_{\rm cw} = t_{\rm cw} v_{\rm cw,ave}$$

$$= (60 \,\mathrm{s}) \left(6.0 \,\frac{\mathrm{m}}{\mathrm{s}} \right)$$

$$V_{\rm ccw,ave} = \frac{\Delta x_{\rm ccw}}{t_{\rm ccw}}$$

$$\Delta x_{\rm ccw} = t_{\rm ccw} v_{\rm ccw,ave}$$

2.16

Var	Given value	Units	Description
V _{ave, 1}	40	m s	starting average velocity
Δx		m	displacement
t ₁	180	S	starting time
V _{ave, 2}		m s	returning average velocity
t 2	150	S	return time

$$3.0 \min X\left(60 \frac{s}{\min}\right) = 180 s$$

$$V_{\text{ave},1} = \frac{\Delta x}{t_1}$$

$$t_1 v_{\text{ave},1} = \Delta x$$

$$\Delta x = t_1 v_{\text{ave},1}$$

$$= (180 \,\mathrm{s}) \left(40 \,\frac{\mathrm{m}}{\mathrm{s}} \right)$$

2.16 (continued)

$$2.5 \min X \left(60 \frac{s}{\min} \right) = 180 s$$

$$V_{\text{ave,2}} = \frac{\Delta x}{t_2}$$

$$=\frac{7200 \text{ m}}{150 \text{ s}}$$

$$= 48 \frac{\text{m}}{\text{s}}$$
 \checkmark

Created by Equator Physics Homework Editor (www.equatorsoftware.com)

2.14 (continued)

$$= (120 \text{ s}) \left(-4 \frac{\text{m}}{\text{s}}\right)$$
$$= -480 \text{ m} \checkmark$$
$$\Delta x = \left|\Delta x_{\text{cw}} + \Delta x_{\text{ccw}}\right|$$
$$= \left|(360 \text{ m}) + (-480 \text{ m})\right|$$
$$= 120 \text{ m} \checkmark$$

Created by Equator Physics Homework Editor (www.equatorsoftware.com)

2.18

Var	Given value	Units	Description
d	4.0	m	distance between floors
V	1.0	m s	elevator speed
Δx_1		m	
t ₁	60	S	
Δx_2		m	
t ₂	20	s	
Δx_3		m	
t ₃	8	s	
Δx		m	total displacement
floor			floor number

$$V = \frac{\Delta x_1}{t_1}$$

$$t_1 v = \Delta x_1$$

$$\Delta x_1 = t_1 v$$

$$= (60 \, s) \left(1.0 \, \frac{m}{s} \right)$$

2.18 (continued)

$$-v = \frac{\Delta x_2}{t_2}$$

$$t_2(-v) = \Delta x_2$$

$$\Delta x_2 = t_2(-v)$$

$$= (20 \,\mathrm{s}) \left(-\left(1.0 \,\frac{\mathrm{m}}{\mathrm{s}}\right) \right)$$

$$= -20 \,\mathrm{m} \quad \checkmark$$

$$V = \frac{\Delta x_3}{t_3}$$

$$t_3 v = \Delta x_3$$

$$\Delta x_3 = t_3 v$$

Created by Equator Physics Homework Editor (www.equatorsoftware.com)

2.18 (continued)

$$= (8 \text{ s}) \left(1.0 \frac{\text{m}}{\text{s}}\right)$$

$$= 8.0 \text{ m}$$

$$\Delta x = \Delta x_1 + \Delta x_2 + \Delta x_3$$

$$= (60. \text{ m}) + (-20. \text{ m}) + (8.0 \text{ m})$$

$$= 48. \text{ m}$$

$$floor = \frac{\Delta x}{d}$$

$$= \frac{48. \text{m}}{4.0 \text{m}}$$

$$= 12.$$