equator

4.32

Var	Given value	Units	Description
F	46	Ν	applied force on brick
f _{BT}		N	friction on brick by table
μ			coefficient of friction
N _{BT}		Ν	normal force on brick by table
W_{BE}		Ν	weight on brick by earth
т	10	kg	mass of brick
g	9.8	$\frac{m}{s^2}$	acc. due to grav. on earth

 $F - f_{\rm BT} = 0$

4.32 (continued)

$$\mathcal{N}_{BT} + -\mathcal{W}_{BE} = 0$$

$$f_{BT} = \mathcal{F} = 46 N$$

$$\mathcal{N}_{BT} = \mathcal{W}_{BE} = \mathcal{M}\mathcal{G}$$

$$= (10 \text{ kg}) \left(9.8 \frac{\text{m}}{\text{s}^2}\right)$$

$$= 98. \text{ N}$$

$$f_{BT} = \mathcal{M} \mathcal{N}_{BT}$$

$$f_{BT} = \mathcal{M} \mathcal{N}_{BT}$$

$$\mathcal{M} = \frac{f_{BT}}{\mathcal{N}_{BT}}$$

$$= \frac{46 \text{ N}}{98. \text{ N}}$$

$$= 0.47 \quad \checkmark$$

4.34 a

Var	Given value	Units	Description
f		Ν	friction
μ	0.45		coefficient of friction
N		Ν	normal force
W		Ν	weight
т	1.00	kg	mass
g	9.80	$\frac{m}{s^2}$	acc. due to grav. on earth

$$N = W = mg$$

$$= (1.00 \text{ kg}) \left(9.80 \frac{\text{m}}{\text{s}^2}\right)$$

$$= 9.80 \,\mathrm{N}$$

$$f = \mu N$$

$$= (0.45)(9.80 \text{ N})$$

= 4.4N 🗸

4.4 N>3.0 N so object won't move

4.34 part b

Var	Given value	Units	Description
f	3.00	Ν	friction
μ			coefficient of friction
N		Ν	normal force
W		Ν	weight
т	1.00	kg	mass
g	9.80	$\frac{m}{s^2}$	acc. due to grav. on earth
F	3.00	Ν	applied force in x-dir.

at the point where the object just begins to move, friction equals the applied force ($F_{NET} = 0$).

$$N = W = mg$$

$$= (1.00 \text{ kg}) \left(9.80 \frac{\text{m}}{\text{s}^2}\right)$$

$$= 9.80 \,\mathrm{N}$$

$$f = \mu N$$

$$\mu = \frac{f}{N}$$

$$=\frac{3.00\,\text{N}}{9.80\,\text{N}}$$

4.34 part b (continued)

= 0.306 🖌

4.34 part c

Var	Given value	Units	Description
f		Ν	friction
μ	0.20		coefficient of friction
N		Ν	normal force
W		Ν	weight
m	1.00	kg	mass
g	9.80	$\frac{m}{s^2}$	acc. due to grav. on earth
F	3.00	N	applied force in x-dir.
$F_{\rm NET}$		N	net force
а		$\frac{m}{s^2}$	acceleration

 $F_{\text{NET}} = ma$

$$F_{\rm NET} = F - f$$

$$N = W = mg$$

$$= (1.00 \text{ kg}) \left(9.80 \frac{\text{m}}{\text{s}^2}\right)$$

$$= 9.80 \, \text{N}$$

$$f = \mu N$$

4.34 part c (continued)

=
$$(0.20)(9.80 \text{ N})$$

= 2.0 N
 $\mathcal{F}_{\text{NET}} = \mathcal{F} - f$
= $(3.00 \text{ N}) - (2.0 \text{ N})$
= 1.0 N
 $\mathcal{A} = \frac{\mathcal{F}_{\text{NET}}}{m}$
= $\frac{1.0 \text{ N}}{1.00 \text{ kg}}$
= $1.0 \frac{\text{m}}{\text{s}^2}$

4.36

on the whole system:

Var	Given value	Units	Description
$F_{\rm NET}$		N	net force on whole system
m _{TOT}		kg	total mass of system
а	1.00	$\frac{m}{s^2}$	acc. of system
<i>m</i> ₁	5.00	kg	mass of concrete block
<i>m</i> ₂	4.00	kg	mass of hanging object
g	9.80	$\frac{m}{s^2}$	acc. due to gravity
f		Ν	friction on concrete block
μ			coefficient of friction
N		Ν	normal force on concrete block

$$m_{\rm TOT} = m_1 + m_2$$

$$= (5.00 \text{ kg}) + (4.00 \text{ kg})$$

= 9.00 kg 🗸 🗸

$$F_{\rm NET} = m_{\rm TOT} a$$

$$= (9.00 \text{ kg}) \left(1.00 \frac{\text{m}}{\text{s}^2} \right)$$

4.36 (continued)

$$= 9.00 \text{ N} \quad \checkmark$$

$$F_{\text{NET}} = m_2 g - f$$

$$f = \mu N$$

$$N = m_1 g$$

$$= (5.00 \text{ kg}) \left(9.80 \frac{\text{m}}{\text{s}^2}\right)$$

$$= 49.0 \text{ N} \quad \checkmark$$

$$F_{\text{NET}} = m_2 g - \mu N$$

$$\mu N = m_2 g - F_{\text{NET}}$$

$$\mu = \frac{m_2 g - F_{\text{NET}}}{N}$$

$$= \frac{(4.00 \text{ kg}) \left(9.80 \frac{\text{m}}{\text{s}^2}\right) - (9.00 \text{ N})}{49.0 \text{ N}}$$

$$= 0.616 \quad \checkmark$$

Var	Given value	Units	Description
m _{TOT}		kg	total mass of system
<i>m</i> ₁	4.0	kg	mass of wooden block
<i>m</i> ₂	5.0	kg	mass of hanging object
$F_{\rm NET}$		Ν	net force on system
а		$\frac{m}{s^2}$	acc. of system
g	9.80	$\frac{m}{s^2}$	acc. due to grav. on earth

to find acceleration, treat both objects as being one system

$$m_{\rm TOT} = m_1 + m_2$$

$$= (4.0 \text{ kg}) + (5.0 \text{ kg})$$

= 9.0 kg 🗸 🗸

$$F_{\rm NET} = m_{\rm TOT} a$$

$$F_{\rm NET} = m_2 g$$

4.38 (continued)

$$= (5.0 \text{ kg}) \left(9.80 \frac{\text{m}}{\text{s}^2}\right)^{\frac{1}{2}}$$
$$= 49. \text{ N} \qquad \checkmark$$
$$a = \frac{F_{\text{NET}}}{m_{\text{TOT}}}$$
$$= \frac{49. \text{ N}}{9.0 \text{ kg}}$$
$$= 5.4 \frac{\text{m}}{\text{s}^2} \qquad \checkmark$$

)

to find tension, consider only the forces acting on the wooden block in the direction is is accelerating

Var	Given value	Units	Description
$\mathcal{F}_{NET,block}$		N	net force on block
T		N	tension in string

$$F_{\text{NET,block}} = m_1 a$$

$$= (4.0 \text{ kg}) \left(5.4 \frac{\text{m}}{\text{s}^2} \right)$$

4.38 (continued)

 $\mathcal{T} = \mathcal{F}_{\text{NET,block}}$

= 22.N 🗸

4.40

Var	Given value	Units	Description
m _{TOT}		kg	total mass of system
<i>m</i> ₁	6.00	kg	mass of pot 1 on table
<i>m</i> ₂	3.00	kg	mass of pot 1 on table
<i>m</i> ₃	4.00	kg	mass of hanging block
<i>f</i> ₁		Ν	friction on pot 1
μ	0.350		coefficient of friction
g	9.80	$\frac{m}{s^2}$	acc. due to gravity
f_2		Ν	friction on pot 2
W_3		Ν	weight of hanging block
$F_{\rm NET}$		Ν	net force on system
а		$\frac{m}{s^2}$	acceleration of system

 $m_{\rm TOT} = m_1 + m_2 + m_3$

= (6.00 kg) + (3.00 kg) + (4.00 kg)

= 13.00 kg 🗸 🗸

On the whole system, the net force is equal to the weight of the hanging block minus the frictional forces on the two pots.

$$f_{1} = \mu m_{1} g$$

$$f_{2} = \mu m_{2} g$$

$$W_{3} = m_{3} g$$

$$\mathcal{W}_{3} = m_{3} g$$

$$\mathcal{F}_{\text{NET}} = W_{3} - f_{1} - f_{2}$$

$$f_{1} = \mu m_{1} g$$

$$= (0.350)(6.00 \text{ kg}) \left(9.80 \frac{\text{m}}{\text{s}^{2}}\right)$$

$$= 20.6 \text{ N}$$

$$f_{2} = \mu m_{2} g$$

$$= (0.350)(3.00 \text{ kg}) \left(9.80 \frac{\text{m}}{\text{s}^{2}}\right)$$

$$= 10.3 \text{ N}$$

$$W_{3} = m_{3} g$$

$$= (4.00 \text{ kg}) \left(9.80 \frac{\text{m}}{\text{s}^{2}}\right)$$

$$= 39.2 \text{ N}$$

$$\mathcal{F}_{\text{NET}} = W_{3} - f_{1} - f_{2}$$

$$= (39.2 \text{ N}) - (20.6 \text{ N}) - (10.3 \text{ N})$$

$$= 8.3 \text{ N}$$

$$\mathcal{A} = \frac{\mathcal{F}_{\text{NET}}}{m_{\text{TOT}}}$$

$$= \frac{8.3 \text{ N}}{13.00 \text{ kg}}$$

$$= 0.64 \frac{\text{m}}{\text{s}^{2}} \quad \checkmark$$

To find the tension in string one, consider the forces in the x-direction on pot 1.

Var	Given value	Units	Description
F _{NET, 1}		N	net force on pot 1 in x-dir
\overline{T}_1		Ν	tension in string 1

$$F_{\text{NET},1} = m_1 a$$

$$= (6.00 \text{ kg}) \left(0.64 \frac{\text{m}}{\text{s}^2} \right)$$

= 3.8N 🗸

$$F_{\text{NET},1} = T_1 - f_1$$

 $T_1 = f_1 + F_{\text{NET},1}$
 $= (20.6 \text{ N}) + (3.8 \text{ N})$
 $= 24.4 \text{ N}$

)

To find the tension in string two, consider the forces in the x-direction on pot 2 (could also do forces in y-dir on hanging block as well).

Var	Given value	Units	Description
F _{NET, 2}		N	net force on pot 2 in x-dir
T_2		Ν	tension in string 2

 $F_{\text{NET},2} = m_2 a$

$$= (3.00 \text{ kg}) \left(0.64 \frac{\text{m}}{\text{s}^2} \right)$$

= 1.9N 🗸

$$F_{\rm NET,2} = T_2 - f_2$$

$$T_2 = f_2 + \mathcal{F}_{\text{NET},2}$$

= (10.3 N) + (1.9 N)