Var	Given value	Units	Description
r		m	radius of space station
d	960	m	diameter of space station
a _c		$\frac{m}{s^2}$	centripetal acceleration (artificial gravity)
g	9.80	$\frac{m}{s^2}$	acc. due to gravity on earth
f		S ⁻¹	frequency of rotation
T		S	period of rotation
V		m s	tangential speed

$$r = \frac{d}{2}$$

 $=\frac{960 m}{2}$

= 480 m 🗸

$$a_{\rm c} = 1.5 g$$

$$= 1.5 \left(9.80 \frac{m}{s^2}\right)$$
$$= 15. \frac{m}{s^2} \checkmark$$

5.14 (continued)

$$f = \frac{1}{T}$$

$$v = \frac{2\pi r}{T} = 2\pi r f$$

$$a_{c} = \frac{v^{2}}{r} = 4\pi^{2} r f^{2}$$

$$f = \sqrt{\frac{a_{c}}{4\pi^{2} r}}$$

$$= \sqrt{\frac{15 \cdot \frac{m}{s^{2}}}{4\pi^{2} (480 \text{ m})}}$$

$$= 0.028 \text{ s}^{-1}$$

$$T = \frac{1}{r}$$

$$= \frac{1}{0.028 \text{ s}^{-1}}$$

$$= 36. \text{ s}$$

5.14 (continued)

Var	Given value	Units	Description
r _c		m	new distance from center for 0.75g

$$0.75 g = 4 \pi^2 r_{\rm c} f^2$$

$$r_{\rm c} = \frac{0.75\,g}{4\,\pi^2\,f^2}$$

$$= \frac{0.75 \left(9.80 \frac{m}{s^2}\right)}{4 \pi^2 \left(0.028 s^{-1}\right)^2}$$

$$= 2.4 \times 10^2 \,\mathrm{m}$$
 \checkmark

Car is coming towards you, out of the page on a curve with banking angle θ .

Var	Given value	Units	Description
N		Ν	normal force on car
θ	68	0	banking angle
т		kg	mass of car
g	9.80	$\frac{m}{s^2}$	acc. due to gravity
$F_{\rm c}$		N	centripetal force on car
V		m s	speed of car
r	100	m	radius of curve

$$N\sin\theta = F_{\rm c}$$

$$N\cos\theta = mg$$

Divide top equation by the bottom one.

5.16 (continued)

 $\frac{\sin\theta}{\cos\theta} = \tan\theta$ $\tan\theta = \frac{F_{c}}{mg}$ $F_{c} = \frac{m\nu^{2}}{r}$ $\tan\theta = \frac{\nu^{2}}{rg}$ $\nu = \sqrt{rg \tan\theta}$ $= \sqrt{(100 \text{ m})(9.80 \frac{\text{m}}{\text{s}^{2}})} \tan(68^{\circ})$ $= 49.3 \frac{\text{m}}{\text{s}} \quad \checkmark$

Tension in string must provide centripetal force to keep can in circle and support weight of can.

Var	Given value	Units	Description
T		Ν	tension in string
$F_{\rm c}$		Ν	centripetal force
т	0.115	kg	mass of can and contents
V	10.0	m s	tangential speed
r	1.00	m	radius of circular path
θ		0	angle of string with horizontal
g	9.80	$\frac{m}{s^2}$	acc. due to grav.
Ŵ		Ν	weight of can and contents

$$F_{\rm c} = \frac{m v^2}{r}$$

=

 $\frac{(0.115 \,\text{kg}) \left(10.0 \,\frac{\text{m}}{\text{s}}\right)^2}{1.00 \,\text{m}}$

5.18 (continued)

$$= 11.5 \text{ N} \quad \checkmark$$
$$\mathcal{W} = mg$$
$$= (0.115 \text{ kg}) \left(9.80 \frac{\text{m}}{\text{s}^2}\right)$$
$$= 1.13 \text{ N} \quad \checkmark$$
$$\tan \theta = \frac{W}{F_c}$$
$$\theta = \operatorname{atan} \frac{W}{F_c}$$
$$= \operatorname{atan} \frac{1.13 \text{ N}}{11.5 \text{ N}}$$
$$= 5.61^\circ \quad \checkmark$$
$$\mathcal{W} = T \sin \theta$$
$$\mathcal{T} = \frac{W}{\sin \theta}$$
$$= \frac{1.13 \text{ N}}{\sin(5.61^\circ)}$$

5.18 (continued)

= 11.6N 🗸

$$220 \frac{km}{h} \left(\frac{1 h}{3600 s}\right) \left(\frac{1000 m}{1 km}\right) = 61.1 \frac{m}{s}$$

Var	Given value	Units	Description
a _c		$\frac{m}{s^2}$	centripetal acc. of pilot
V	61.1	m s	speed of pilot
r	180	m	radius of pilot's path
g's			ratio of a_c to acc. due to grav.
g	9.80	$\frac{m}{s^2}$	acc. due to gravity

$$a_{\rm c} = \frac{v^2}{r}$$

$$= \frac{\left(61.1\,\frac{m}{s}\right)^2}{180\,\text{m}}$$

$$= 20.7 \frac{m}{s^2}$$

5.20 (continued)

$$g's = \frac{a_{c}}{g}$$
$$= \frac{20.7 \frac{m}{s^{2}}}{9.80 \frac{m}{s^{2}}}$$

Var	Given value	Units	Description
F _c		N	centripetal force on pilot
W		Ν	weight of pilot
N		N	normal force or apparent weight of pilot
m		kg	mass of pilot

$$F_{\rm c} = N - W$$

$$N = F_{\rm c} + W$$

$$N = ma_{c} + mg$$

$$N = (a_{\rm c} + g) m$$

 $(2.11\,g+g)\,m\ =\ 3.11\,m\,g$

5.20 (continued)

Normal force is 3.11 times the actual weight of the pilot.

Var	Given value	Units	Description
θ	56	0	angle of chain with vertical
$F_{\rm c}$		Ν	centripetal force
W		Ν	weight of plane
V		m s	plane speed
r	46	m	radius of path
g	9.80	$\frac{m}{s^2}$	acc. due to gravity

$$\tan \theta = \frac{F_{\rm c}}{W}$$

$$\tan\theta = \frac{\nu^2}{rg}$$

$$\sqrt{\tan \theta r g} = v$$

5.22 (continued)

$$\nu = \sqrt{\tan \theta r g}$$
$$= \sqrt{\tan (56^\circ) (46 \,\mathrm{m}) \left(9.80 \,\frac{\mathrm{m}}{\mathrm{s}^2}\right)}$$
$$= 25.9 \,\frac{\mathrm{m}}{\mathrm{s}} \quad \checkmark$$