6.20

Var	Given value	Units	Description
<i>KE</i> _a		J	Kinetic energy in part a)
т	1800	kg	Mass
<i>∨</i> a	25	m s	Velocity in part a)

$$KE_{\rm a} = \frac{1}{2} m v_{\rm a}^2$$

$$=\frac{1}{2}(1800 \text{ kg})(25 \frac{\text{m}}{\text{s}})^2$$

= 562500J 🗸

Var	Given value	Units	Description
KE _b		J	Kinetic energy in part b)
ν _b	33.3	m s	Velocity in part b)

 $120 \frac{km}{h} \left(\frac{1000 \, m}{1 \, km}\right) \left(\frac{1 \, h}{3600 \, S}\right) = 33.3 \frac{m}{s}$

$$K E_{\rm b} = \frac{1}{2} m v_{\rm b}^2$$

$$= \frac{1}{2} (1800 \text{ kg}) (33.3 \frac{\text{m}}{\text{s}})^2$$

$$= 9.98 \times 10^5$$
 J

∕

$$25 g\left(\frac{1 \ kg}{1000 \ g}\right) = 0.0025 \ kg$$

$$90 \frac{km}{h} \left(\frac{1000 m}{1 km}\right) \left(\frac{1 h}{3600 s}\right) = 25 \frac{m}{s}$$

Var	Given value	Units	Description
KE		J	Kinetic energy
т	0.0025	kg	Mass
V	25	<u>m</u> s	Velocity

$$KE = \frac{1}{2} m v^2$$

$$= \frac{1}{2} (0.0025 \text{ kg}) \left(25 \frac{\text{m}}{\text{s}}\right)^2$$

= 0.78J 🗸

$$2\frac{km}{h}\left(\frac{1000\ m}{1\ km}\right)\left(\frac{1\ h}{3600\ s}\right) = 0.55\frac{m}{s}$$

Var	Given value	Units	Description
<i>KE</i> _{car}		J	Kinetic energy of car
m _{car}	1000.	kg	Mass of car
✓ _{car}	0.55	m s	Velocity of car

$$KE_{\rm car} = \frac{1}{2} m_{\rm car} \nu_{\rm car}^2$$

$$=\frac{1}{2}(1000 \text{ kg})\left(0.55\frac{\text{m}}{\text{s}}\right)^2$$

Var	Given value	Units	Description
<i>KE</i> _{girl}		J	Kinetic energy of girl
m _{girl}	50.	kg	mass of girl
$ u_{\rm girl}$		m s	velocity of girl

$$KE_{girl} = KE_{car}$$

$$= 1.5 \times 10^2$$
 J

6.24 (continued)

$$\mathcal{K}\mathcal{E}_{\text{girl}} = \frac{1}{2} m_{\text{girl}} \nu_{\text{girl}}^{2}$$
$$\nu_{\text{girl}} = \sqrt{\frac{\mathcal{K}\mathcal{E}_{\text{girl}}}{\frac{1}{2}m_{\text{girl}}}}$$
$$= \sqrt{\frac{1.5 \times 10^{2} \text{J}}{\frac{1}{2}(50.\text{kg})}}$$
$$= 2.4 \frac{\text{m}}{\text{s}} \quad \checkmark$$

Created by Equator Physics Homework Editor (www.equatorsoftware.com)

Var	Given value	Units	Description
KE	3.0	J	Kinetic energy
т	1.0	kg	Mass
V _f		m/s	final velocity
Vi	0.0	m s	Initial velocity
Δx		m	displacement
t	2.0	S	time

$$KE = \frac{1}{2} m v_{\rm f}^2$$

$$\nu_{\rm f} = \sqrt{\frac{KE}{\frac{1}{2}m}}$$
$$= \sqrt{\frac{3.0 \,\text{J}}{\frac{1}{2}(1.0 \,\text{kg})}}$$
$$= 2.4 \,\frac{\text{m}}{\text{s}} \quad \checkmark$$

6.26 (continued)

$$\Delta x = \frac{1}{2} (v_{f} + v_{i}) t$$
$$= \frac{1}{2} \left(\left(2.4 \frac{m}{s} \right) + \left(0.0 \frac{m}{s} \right) \right) (2.0 s)$$
$$= 2.4 m \checkmark$$

Var	Given value	Units	Description
F		N	Force of gravity = Centripetal force
G	6.673×10 ⁻¹¹	$\frac{m^{3}}{kg s^{2}}$	Universal gravitational constant
<i>m</i> ₁		kg	Mass of satellite
<i>m</i> ₂		kg	Mass of planet
r		m	radius of orbit
KE		J	Kinetic energy of satellite
V		m s	Velocity of satellite

find centripetal force on satellite in terms of kinetic energy:

$$KE = \frac{1}{2} m_1 \nu^2$$

$$2 KE = m_1 v^2$$

$$F = m_1 \frac{v^2}{r} = \frac{2 KE}{r}$$

centripetal force on satellite equals gravitational force on satellite by planet

$$\frac{2 \ \text{KE}}{r} = G \frac{m_1 \ m_2}{r^2}$$
$$2 \ \text{KE} = G \frac{m_1 \ m_2}{r}$$
$$\text{KE} r = \frac{G \ m_1 \ m_2}{2} = \text{constant}$$

Created by Equator Physics Homework Editor (www.equatorsoftware.com)

When the 6.00 kg block is raised 0.800 m, the 2.00 kg block must be lowered 0.800 m. Find the change in energy of each.

Var	Given value	Units	Description
ΔPE_6		J	change in potential energy of 6 kg block
m_{6}	6.00	kg	mass of 6 kg block
g	9.80	$\frac{m}{s^2}$	acc. due to grav.
Δh_6	0.800	m	change in height of 6 kg block
ΔPE_2		J	change in potential energy of 6 kg block
<i>m</i> ₂	2.00	kg	mass of 6 kg block
Δh_2	-0.800	m	change in height of 2 kg block
ΔPE_{sys}		J	change in potential energy of system

$$\Delta P E_6 = m_6 g \Delta h_6$$

$$= (6.00 \text{ kg}) \left(9.80 \frac{\text{m}}{\text{s}^2}\right) (0.800 \text{ m})$$

= 47.0J 🗸

6.30 (continued)

$$\Delta PE_{2} = m_{2} g \Delta h_{2}$$

$$= (2.00 \text{ kg}) \left(9.80 \frac{\text{m}}{\text{s}^{2}}\right) (-0.800 \text{ m})$$

$$= -15.7 \text{ J}$$

$$\Delta PE_{\text{sys}} = \Delta PE_{6} + \Delta PE_{2}$$

$$= (47.0 \text{ J}) + (-15.7 \text{ J})$$

$$= 31.3 \text{ J}$$

Var	Given value	Units	Description
PE_{floor}		J	grav. potential energy with respect to floor
т	0.302	kg	Mass
g	9.80	$\frac{m}{s^2}$	Acceleration due to gravity
h _{floor}	0.740	m	Height with respect to floor
PE _{counter}		J	grav. potential energy with respect to counter
h _{counter}	-0.370	m	difference in position of tabletop and counter

 $PE_{\text{floor}} = mgh_{\text{floor}}$

$$= (0.302 \text{ kg}) \left(9.80 \frac{\text{m}}{\text{s}^2}\right) (0.740 \text{ m})$$

= 2.19J 🗸

0.740 m - 1.110 m = -0.370 m

$$PE_{counter} = mgh_{counter}$$

$$= (0.302 \text{ kg}) \left(9.80 \frac{\text{m}}{\text{s}^2}\right) (-0.370 \text{ m})$$

Created by Equator Physics Homework Editor (www.equatorsoftware.com)

6.32 (continued)

= −1.10J 🖌 🖌

Var	Given value	Units	Description
eff			efficiency
W _{out}		J	work out
W_{in}		J	work in
MA			mechanical advantage
F _{out}		Ν	force out
F _{in}	12	Ν	force in
$\Delta x_{\rm in}$		m	distance through which crank is turned
#rev	400		revolution through which crank is turned
r	0.30	m	length of crank
Δx_{out}	4.0	m	height load is raised to
т	210.	kg	mass of load
g	9.80	$\frac{m}{s^2}$	acc. due to grav.

$$\Delta x_{\rm in} = (\#rev) 2 \pi r$$

 $= ((400)) 2 \pi (0.30 \text{ m})$

= 754 m 🗸

6.34 (continued)

$$W_{in} = \mathcal{F}_{in} \Delta x_{in}$$

$$= (12N)(754m)$$

$$= 9048J$$

$$\mathcal{F}_{out} = \mathcal{M}g$$

$$= (210.\text{ kg})\left(9.80\frac{\text{m}}{\text{s}^2}\right)$$

$$= 2058N$$

$$\mathcal{W}_{out} = \mathcal{F}_{out} \Delta x_{out}$$

$$= (2058N)(4.0m)$$

= 8232J 🗸

6.34 (continued)

$$eff = \frac{W_{out}}{W_{in}}$$

$$=\frac{8232J}{9048J}$$

$$MA = \frac{F_{out}}{F_{in}}$$
$$= \frac{2058N}{12N}$$