At the top, the egg has gravitational potential energy and at 0.50 m from the ground, it has both potential and kinetic energy. According to conservation of energy, the total energy at these two points is a constant.

Var	Given value	Units	Description
PE _i		J	gravitational potential energy at top
KE _f		J	final kinetic energy
PEf		J	final potential energy
т		kg	mass of object
g	9.80	$\frac{m}{s^2}$	acc. due to grav.
h _i	3.0	m	initial height
h _f	0.50	m	final height
V _f		m s	final velocity

 $PE_i = KE_f + PE_f$

 $mgh_{i} = \frac{1}{2}mv_{f}^{2} + mgh_{f}$ $gh_{i} = \frac{1}{2}v_{f}^{2} + gh_{f}$ $g(h_{i} - h_{f}) = \frac{1}{2}v_{f}^{2}$

6.40 (continued)

$$\nu_{\rm f} = \sqrt{2g(h_{\rm i} - h_{\rm f})}$$
$$= \sqrt{2(9.80\frac{\rm m}{\rm s^2})((3.0\,{\rm m}) - (0.50\,{\rm m}))}$$
$$= 7.0\frac{\rm m}{\rm s} \quad \checkmark$$

Var	Given value	Units	Description
KE _i		J	initial kinetic energy
KE _f		J	kinetic energy just before roof
PEf		J	potential energy at roof
т		kg	mass og ball
Vi	12.3	m s	initial velocity
Vf		m s	velocity just before roof
g	9.80	$\frac{m}{s^2}$	acc. due to gravity
h	5.42	m	height of roof

 $KE_{i} = KE_{f} + PE_{f}$

 $\frac{1}{2}mv_{i}^{2} = \frac{1}{2}mv_{f}^{2} + mgh$ $\frac{1}{2}v_{i}^{2} = \frac{1}{2}v_{f}^{2} + gh$ $\frac{1}{2}v_{i}^{2} - gh = \frac{1}{2}v_{f}^{2}$ $2\left(\frac{1}{2}v_{i}^{2} - gh\right) = v_{f}^{2}$ $v_{f} = \sqrt{v_{i}^{2} - 2gh}$

6.42 (continued)

$$= \sqrt{\left(12.3 \frac{m}{s}\right)^2 - 2\left(9.80 \frac{m}{s^2}\right)(5.42 m)}$$
$$= 6.7 \frac{m}{s} \checkmark$$

The initial kinetic energy is equal to the potential energy at the maximum height.

Var	Given value	Units	Description
PE_{max}		J	potential energy at maximum height
т		kg	mass
h _{max}	9.0	m	maximum height
g	9.80	$\frac{m}{s^2}$	Acceleration due to gravity
KE ₈		J	kinetic energy at 8 m
PE_8		J	potential energy at 8 m
V ₈		m s	velocity at 8 m
h_8	8.0	m	height at 8 m

$$PE_{max} = KE_8 + PE_8$$

$$mgh_{\rm max} = \frac{1}{2}mv_8^2 + mgh_8$$

$$gh_{\rm max} = \frac{1}{2}v_8^2 + gh_8$$

$$gh_{\text{max}} = \frac{1}{2}v_8^2 + gh_8$$

 $g(h_{\rm max} - h_8) = \frac{1}{2} v_8^2$

6.44 (continued)

$$\nu_{8} = \sqrt{2g(h_{\text{max}} - h_{8})}$$
$$= \sqrt{2(9.80 \frac{\text{m}}{\text{s}^{2}})((9.0 \text{ m}) - (8.0 \text{ m}))}$$
$$= 4.4 \frac{\text{m}}{\text{s}} \quad \checkmark$$

Var	Given value	Units	Description
KE _i		J	initial kinetic energy
PE _i		J	initial potential energy
KE _f	293	J	final kinetic energy
\overline{PE}_{f}		J	final potential energy
т		kg	
Vi	15.7	m s	
h _i	12.7	m	
h _f	1.29	m	
g	9.80	$\frac{m}{s^2}$	Acceleration due to gravity

$$KE_{i} + PE_{i} = KE_{f} + PE_{f}$$

$$\frac{1}{2}mv_{i}^{2} + mgh_{i} = KE_{f} + mgh_{f}$$

 $m\left(\frac{1}{2} v_i^2 + gh_i - gh_f\right) = KE_f$

$$\mathcal{M} = \frac{KE_{f}}{\frac{1}{2}v_{i}^{2} + gh_{i} - gh_{f}}$$

6.46 (continued)

$$= \frac{293 \text{ J}}{\frac{1}{2} \left(15.7 \frac{\text{m}}{\text{s}}\right)^2 + \left(9.80 \frac{\text{m}}{\text{s}^2}\right) (12.7 \text{ m}) - \left(9.80 \frac{\text{m}}{\text{s}^2}\right) (1.29 \text{ m})}$$
$$= 1.25 \text{ kg} \qquad \checkmark$$

Var	Given value	Units	Description
θ	15	o	angle of swing ropes with vertical
L	2.5	m	length of ropes
h		m	height of person from lowest point of swing
PE_{top}		J	potential energy at top of swing
<i>KE</i> _{bot}		J	kinetic energy at bottom of swing
т		kg	mass
g	9.80	$\frac{m}{s^2}$	acceleration due to gravity
V		m s	velocity at bottom of swing

$$\cos\theta = \frac{L-h}{L}$$

$$L\cos\theta = L - h$$

6.48 (continued)

$$h = \mathcal{L} - \mathcal{L} \cos \theta$$

$$= (2.5 \text{ m}) - (2.5 \text{ m}) \cos (15^{\circ})$$

$$= 0.0852 \text{ m}$$

$$PE_{\text{top}} = KE_{\text{bot}}$$

$$mgh = \frac{1}{2} m v^{2}$$

$$gh = \frac{1}{2} v^{2}$$

$$v = \sqrt{2gh}$$

$$= \sqrt{2(9.80 \frac{\text{m}}{\text{s}^{2}})(0.0852 \text{ m})}$$

$$= 1.29 \frac{\text{m}}{\text{s}}$$

Var	Given value	Units	Description
θ	15	o	angle of swing ropes with vertical
L	2.5	m	length of ropes
h		m	height of person from lowest point of swing
PE_{top}		J	potential energy at top of swing
<i>KE</i> _{bot}		J	kinetic energy at bottom of swing
т		kg	mass
g	9.80	$\frac{m}{s^2}$	acceleration due to gravity
V		m s	velocity at bottom of swing

$$\cos\theta = \frac{L-h}{L}$$

$$L\cos\theta = L - h$$

6.48 (continued)

$$h = \mathcal{L} - \mathcal{L} \cos \theta$$

$$= (2.5 \text{ m}) - (2.5 \text{ m}) \cos (15^{\circ})$$

$$= 0.0852 \text{ m}$$

$$PE_{\text{top}} = KE_{\text{bot}}$$

$$mgh = \frac{1}{2} m v^{2}$$

$$gh = \frac{1}{2} v^{2}$$

$$v = \sqrt{2gh}$$

$$= \sqrt{2(9.80 \frac{\text{m}}{\text{s}^{2}})(0.0852 \text{ m})}$$

$$= 1.29 \frac{\text{m}}{\text{s}}$$

Var	Given value	Units	Description
т		kg	mass of block
g	9.80	$\frac{m}{s^2}$	Acceleration due to gravity
h		m	drop height
Rtuy		m	radius of loop
ν _B		m s	minimum velocity at top of loop so people don't fall out

$$PE_{A} = PE_{B} + KE_{B}$$

$$mgh = mg2R + \frac{1}{2}mv_{\rm B}^2$$

At the top of the loop, there is a normal force and a weight pointing towards the center of the circle. At the very minimum velocity to get around the loop without falling out, the normal force would equal zero. Therefore, the centripetal force would equal the weight.

$$F_{\rm c} = W$$

$$\frac{m v_{\rm B}^{2}}{R} = mg$$

$$\frac{v_{\rm B}^{2}}{R} = g$$

$$v_{\rm B}^{2} = gR$$

$$v_{\rm B} = \sqrt{gR}$$

6.50 (continued)

Substituting back into the conservation of energy equation for v $_{\rm B}{\,}^2$, you get:

 $mgh = mg2R + \frac{1}{2}mgR$ $h = 2R + \frac{1}{2}R$ h = 2.5R

6.60a

Var	Given value	Units	Description
P_{W}		W	power in watts
P_{hp}	108	hp	power in horsepower
W	746	W	watts in 1 hp
HP	1	hp	

$$P_{\rm W} = P_{\rm hp} \left(\frac{W}{HP} \right)$$

$$= (108 \text{ hp}) \left(\frac{746 \text{ W}}{1 \text{ hp}} \right)$$

= 80568W 🗸

Var	Given value	Units	Description
#batteries			number of batteries
$P_{\rm BATT}$	300.	W	power in one battery

#batteries =
$$\frac{P_{W}}{P_{BATT}}$$

= $\frac{80568W}{300.W}$
= 269.

Parts b) and c) are done the same way.

Var	Given value	Units	Description
Р		W	Average power
W		J	Work
t	3.00	S	time
F	40.0	N	Force
Δx	10.0	m	Distance
θ	0	o	Angle between force and displacement

 $W = F\Delta x \cos \theta$

- $= (40.0 \text{ N})(10.0 \text{ m})\cos(0^{\circ})$
- = 400.J 🗸

$$P = \frac{W}{t}$$

$$=\frac{400.J}{3.00s}$$

= 133.W 🗸

Var	Given value	Units	Description
Р		W	power
W		J	Work
t	2.00	S	Duration of work
F		Ν	Force necessary to lift book
Δx	0.520	m	Distance
θ	0	0	Angle
т	2.25	kg	mass
g	9.80	$\frac{m}{s^2}$	Acceleration due to gravity

F = mg

$$= (2.25 \text{ kg}) \left(9.80 \frac{\text{m}}{\text{s}^2}\right)$$

= 22.0N 🗸

 $W = F\Delta x \cos \theta$

 $= (22.0 \text{ N})(0.520 \text{ m})\cos(0^{\circ})$

= 11.4J 🗸

6.64 (continued)

$$P = \frac{W}{t}$$
$$= \frac{11.4 \text{ J}}{2.00 \text{ s}}$$

= 5.70W 🖌

Var	Given value	Units	Description
$P_{\rm HP}$		hp	power in horsepower
hp	1	hp	
W	746	W	watts in 1 hp

$$P_{\rm HP} = P\left(\frac{h\rho}{w}\right)$$

$$= (5.70 \text{ W}) \left(\frac{1 \text{ hp}}{746 \text{ W}}\right)$$

Var	Given value	Units	Description
P_{W}		W	power in watts
$P_{\rm hp}$	10	hp	power in horsepower
W	746	W	watts in 1 hp
HP	1	hp	
t	18	S	time
W		J	Work
т		kg	mass
g	9.80	$\frac{m}{s^2}$	Acceleration due to gravity
Δx	40.	m	Distance
θ	0	o	Angle

$$P_{\rm W} = P_{\rm hp} \left(\frac{W}{HP} \right)$$

$$= (10 \text{ hp}) \left(\frac{746 \text{ W}}{1 \text{ hp}} \right)$$

$$\mathcal{W} = (mg)\Delta x \cos\theta$$

$$P_{W} = \frac{W}{t}$$

6.66 (continued)

$$P_{W} = \frac{mg\Delta x\cos\theta}{t}$$

$$m = \frac{P_{W}}{g\Delta x\cos\theta} t$$

$$= \frac{7460W}{(9.80\frac{m}{s^{2}})(40.m)\cos(0^{\circ})} (18s)$$

Var	Given value	Units	Description
P_{W}		W	power in watts
$P_{\rm hp}$	10	hp	power in horsepower
W	746	W	watts in 1 hp
HP	1	hp	
t	18	S	time
W		J	Work
т		kg	mass
g	9.80	$\frac{m}{s^2}$	Acceleration due to gravity
Δx	40.	m	Distance
θ	0	o	Angle

$$P_{\rm W} = P_{\rm hp} \left(\frac{W}{HP} \right)$$

$$= (10 \text{ hp}) \left(\frac{746 \text{ W}}{1 \text{ hp}} \right)$$

$$\mathcal{W} = (mg)\Delta x \cos\theta$$

$$P_{W} = \frac{W}{t}$$

6.66 (continued)

$$P_{W} = \frac{mg\Delta x\cos\theta}{t}$$

$$m = \frac{P_{W}}{g\Delta x\cos\theta} t$$

$$= \frac{7460W}{(9.80\frac{m}{s^{2}})(40.m)\cos(0^{\circ})} (18s)$$

Var	Given value	Units	Description
$ u_{mph}$	50.	<u>mi</u> h	velocity in $\frac{mi}{h}$
V		m/s	velocity in $\frac{m}{s}$

$$\nu = \nu_{\rm mph} \rightarrow \frac{\rm m}{\rm s}$$

$$= \left(50.\,\frac{\text{mi}}{\text{h}}\right) \left(1609.3\,\frac{\text{m}}{\text{mi}}\right) \left(2.77777778\times10^{-4}\,\frac{\text{h}}{\text{s}}\right)$$

$$= 22. \frac{m}{s} \checkmark$$

Var	Given value	Units	Description
Р		W	power in watts
$P_{\rm hp}$	30.	hp	power in horsepower
hp	1	hp	
W	746	W	watts in 1 horsepower
F		N	retarding force
θ	0	0	angle

$$P = P_{\rm hp}\left(\frac{w}{h\rho}\right)$$

$$= (30. hp) \left(\frac{746 W}{1 hp} \right)$$

$$= 2.2 \times 10^4 \text{ W}$$

 \checkmark

6.68 (continued)

$$P = F v \cos \theta$$

$$\mathcal{F} = \frac{\mathcal{P}}{\nu \cos \theta}$$
$$= \frac{2.2 \times 10^4 \text{ W}}{(22.\frac{\text{m}}{\text{s}}) \cos(0^\circ)}$$

Var	Given value	Units	Description
V		<u>m</u> s	velocity of tape in $\frac{m}{s}$
✓ _{inps}	1.875	in s	velocity of tape in $\frac{in}{s}$
Pout		W	power needed to pull tape
F	0.98	N	force
%			
P_{in}	1.8	W	power consumed by motor

$$\nu = \nu_{inps} \rightarrow \frac{m}{s}$$

$$= (1.875 \frac{\text{in}}{\text{s}})(0.02540 \frac{\text{m}}{\text{in}})$$

$$= 0.04763 \frac{m}{s}$$
 \checkmark

$$P_{out} = F v$$

$$= (0.98 \text{ N}) \left(0.04763 \frac{\text{m}}{\text{s}} \right)$$

6.70 (continued)

$$\% = \frac{P_{\text{out}}}{P_{\text{in}}} 100$$

$$= \frac{0.047W}{1.8W} 100$$

Var	Given value	Units	Description
V		m s	velocity
$ u_{\rm kmph}$	7.2	km h	velocity
P_{L}	400	W	power on level treadmill
F		Ν	force to overcome friction, etc.

$$\nu = \nu_{\rm kmph} \rightarrow \frac{\rm m}{\rm s}$$

$$= (7.2 \frac{\text{km}}{\text{h}}) (1000 \frac{\text{m}}{\text{km}}) (2.777777778 \times 10^{-4} \frac{\text{h}}{\text{s}})$$
$$= 2.0 \frac{\text{m}}{\text{s}} \checkmark$$

$$P_{L} = F V$$

$$F = \frac{P_{L}}{V}$$

$$= \frac{400 W}{2.0 \frac{m}{s}}$$

$$= 2.0 \times 10^{2} N \quad \checkmark$$

6.72 (continued)

Var	Given value	Units	Description
$P_{\rm G}$		W	power to overcome gravity
P	600	W	power person exerts on inclined treadmill
<i>W</i> _x		N	x-component of weight
т	73	kg	mass of person
g	9.80	$\frac{m}{s^2}$	Acceleration due to gravity
θ		0	angle of incline

$$P_{\rm G} = P_{\rm I} - P_{\rm L}$$

= (600 W) - (400 W)= 200 W

Force to overcome gravity would equal the x-component of their weight.

$$P_{\rm G} = W_{\rm X} v$$
$$W_{\rm X} = \frac{P_{\rm G}}{v}$$
$$= \frac{200 \rm W}{2.0 \frac{\rm m}{\rm s}}$$

6.72 (continued)

$$= 1.0 \times 10^{2} \,\mathrm{N} \quad \checkmark$$
$$W_{\mathrm{x}} = mg\sin\theta$$

$$\theta = \operatorname{asin} \frac{W_x}{mg}$$

$$= \operatorname{asin} \frac{1.0 \times 10^{2} \,\mathrm{N}}{(73 \,\mathrm{kg}) \left(9.80 \,\frac{\mathrm{m}}{\mathrm{s}^{2}}\right)}$$