- 1. Find the number of grams of polonium remaining after 276 days if 67 grams of the isotope were initially present. The half-life of polonium is 138 days.
- 2. Explain the meaning of the half-life of a radioactive substance.
- 3. Simplify: $\frac{x^{-6}}{x^{-7}}$
- 4. Evaluate (assume $x \neq 0$ and $y \neq 0$): $6x^0 + 7y^0$
 - [A] 0
- [B] 6x + 7y [C] 13xy
- [D] 13
- 5. Write the expression so that it contains only positive exponents.

$$\frac{q^{-7}r^{-3}}{s^{-4}}$$

- [A] $-\frac{s^4}{a^7 r^3}$ [B] $\frac{s^4}{a^7 r^3}$ [C] $q^7 r^3 s^4$ [D] $-\frac{q^7 r^3}{s^4}$

- 6. Write the expression so that it contains only positive exponents.

$$\frac{v^{-6}w^{-9}}{x^{-2}}$$

- [A] $-\frac{x^2}{v^6w^9}$ [B] $v^6w^9x^2$ [C] $\frac{x^2}{v^6w^9}$ [D] $-\frac{v^6w^9}{x^2}$
- 7. Write 0.0000324 in scientific notation.
 - [A] 0.324×10^{-4}

- [B] 0.324×10^{-6} [C] 3.24×10^{-5} [D] 324×10^{-7}
- 8. Write 87,100 in scientific notation.
 - [A] 87.1×10^6
- [B] 0.871×10^5 [C] 8.71×10^4 [D] 871×10^2
- 9. Explain why scientific notation is used to write very large or very small numbers.

10. Compare the quantities in Column A and Column B.

Column A

Column B

the value of $2 \cdot (4 \times 10^3)$ the value of $4 \cdot (2 \times 10^4)$

- [A] The quantity in Column A is greater. [B] The quantity in Column B is greater.
- [C] The quantities are equal.
- [D] The relationship cannot be determined from the information given.

Simplify:

11. $a^{-2}(a^3)(a^{-5})$

- 12. $(-3xy^3)(-2xy)$ [A] $6xy^3$ [B] $6x^2y^4$ [C] $-5x^2y^4$ [D] -5xy

- 13. Explain how to multiply powers with the same base.
- 14. Write $8x^8$ as the product of two powers with the same base.
- 15. Explain why $2a^3 \cdot b^{10}$ cannot be simplified.

Simplify:

16.
$$(2qr^6s^5)^3$$

17.
$$(5tu^4v^3)^2$$

18.
$$x^{-5} \cdot x^3$$

- 19. Simplify the product: $(2bc^5)^3(bc)^2$

 - [A] $8b^5c^7$ [B] $2b^4c^{17}$ [C] $8b^5c^{17}$ [D] $2b^5c^{17}$

Simplify:

20.
$$(2x^2y^{-2})^{-3}$$
 [A] $\frac{y^6}{6x^2}$ [B] $\frac{-6x^2}{y^6}$ [C] $\frac{y^6}{8x^6}$ [D] $\frac{8x^6}{y^6}$

[A]
$$\frac{y^6}{6x^2}$$

[B]
$$\frac{-6x^2}{y^6}$$

[C]
$$\frac{y^6}{8x^6}$$

[D]
$$\frac{8x^6}{y^6}$$

- 21. Simplify: $(2x^2y^{-5})^2$ [A] $\frac{y^{10}}{4x^4}$ [B] $\frac{y^{10}}{4x^2}$ [C] $\frac{4x^2}{y^{10}}$ [D] $\frac{4x^4}{y^{10}}$

- 22. The formula for the area of a square is $A = s^2$. Write an expression for the area of a square in which $s = 4x^4$.

Simplify:

- 23. $\frac{40x^6y^2}{-8x^2y^5}$
- 24. $\frac{b^{-2}c^{-5}}{d^{-9}}$
- 25. $\frac{45x^3}{9x^{-4}}$ [A] 5x [B] $\frac{5}{x}$ [C] $\frac{5}{x^7}$

- 26. Explain why the expression $\frac{w^4}{w}$ is *not* in simplest form.