980000000000

Name:	Block:	Date:

Mathematics Problem of the Day

Show All Work in pencil for full credit!

PLAYTHINK	DIFFICULTY:
IAA	REQUIRED: (#)
100	COMPLETION: TIME:

FLATLAND CATASTROPHE

The senses of Flatlanders are limited to two dimensions. So if someone were to observe them from a point just "above" their world, the Flatlanders would have no way of seeing that observer.

But what if you tossed a ball through the two-dimensional plane of Flatland? Would the Flatlanders perceive the event as some sort of astronomical catastrophe? Can you describe exactly what they would see?

Туре:	HSPA, _	_P/SAT, _	_DG,	ALG, _	_SMPSN,	other	
-------	---------	-----------	------	--------	---------	-------	--

 $m\angle 1 = 90^{\circ}$

20

29

a. ?

Given

$$m\angle 2 = 90^{\circ}$$

$$m \angle 1 = m \angle 2$$

10.
$$m \angle AEB = m \angle CED$$

$$m \angle BEC = m \angle BEC$$

$$m \angle AEB + m \angle BEC = m \angle CED + m \angle BEC$$

$$m \angle AEC = m \angle AEB + m \angle BEC$$

$$m \angle BED = m \angle CED + m \angle BEC$$

$$m \angle AEC = m \angle BED$$

5. Given:
$$DG = 8$$
, $GF = 8$, $\overline{GF} \cong \overline{EF}$

Prove:
$$\overline{DG} \cong \overline{EF}$$

1.
$$DG = 8$$
, $GF = 8$

2.
$$DG = GF$$

3.
$$\overrightarrow{DG} \cong \overrightarrow{GF}$$

4.
$$\overline{GF} \cong \overline{EF}$$

5.
$$\overline{DG} \cong \overline{EF}$$

Reasons

1.4 6. Given: $\overline{FR} \cong \overline{AN}$

Prove:
$$\overline{FA} \cong \overline{RN}$$

Statements

14

2.
$$FR = AN$$

$$3. RA = RA$$

$$4. FR + RA = AN + RA$$

5.
$$FR + RA = FA$$

$$6. AN + RA = RN$$

7.
$$FA = RN$$

8.
$$\overline{FA} \cong \overline{RN}$$

Reasons

4. Given: OP = MN, MN = QR

Prove:	\overline{OP}	≃	OR
LIDAC.	Or.	=	VΛ

	Statemer	its .			_
•	1. OP =	MN.	MN	==	OR

2.
$$OP = QR$$

3.
$$\overline{OP} \cong \overline{QR}$$

11. Complete the proof.

Given: $\angle 1$ and $\angle 2$ are complementary. $\angle 1 \cong \angle 3$, $\angle 2 \cong \angle 4$

Prove: ∠3 and ∠4 are complementary.

Statements

1. ?

2.
$$m \angle 1 + m \angle 2 = 90^\circ$$

5.
$$m \angle 3 + m \angle 2 = 90^{\circ}$$

6.
$$m \angle 3 + m \angle 4 = 90^{\circ}$$

Reasons

4. Defintion of congruent angles

12. Write a two-column proof.

Given: $m \angle 6 = m \angle 7$

Prove: ∠5 ≅ ∠8

13. Write an argument for Exercise 12 in the form of a paragraph proof.

Practice B

For use with pages 102-107

Match the statement with the Property of Congruence.

- 1. For any segment \overline{XY} , $\overline{XY} \cong \overline{XY}$
- 2. If $\overline{JK} \cong \overline{MN}$ and $\overline{MN} \cong \overline{CD}$, then $\overline{JK} \cong \overline{CD}$.
- 3. If $\overline{BN} \cong \overline{TR}$, then $\overline{TR} \cong \overline{BN}$.

- A. Transitive Property
- B. Symmetric Property
- C. Reflexive Property

Mark the diagram with the given information.

4.
$$LM = 5$$
, $LP = 5$
 $MN = 3$, $PN = 3$

5. E is the midpoint of \overline{AC} . E is the midpoint of \overline{BD} .

6. $\overline{WX} \cong \overline{YZ}$

Complete the argument, giving a reason for each step.

- 7. Given: HI = 8, IJ = 8, $\overline{IJ} \cong \overline{JH}$
- Prove: $\overline{HI} \cong \overline{JH}$

8. Given: AL = SK

Prove: AS = LK

$$A$$
 L S K

Statements	Reasons		
1. $HI = 8$	1. ?		
2 . $IJ = 8$	2. ?		
3. $HI = IJ$	3. ?		
$4. \ \overline{HI} \cong \overline{IJ}$	4. ?		

- 5. $\overline{IJ} \cong \overline{JH}$
- 6. $\overline{HI} \cong \overline{JH}$

Statements	Reasons
1. AL = SK	1. ?
2. LS = LS	2 . ?
3. AL + LS = SK + LS	3 . ?
4. AL + LS = AS	4. ?

- 5. SK + LS = LK
- $6. \ AS = LK$

- 9. Write an argument for Exercise 7 in the form of a paragraph proof.

Practice B

For use with pages 109-116

Use the diagram to decide whether the statement is true or false.

- 1. If $m \angle 5 = 42^{\circ}$, then $m \angle 6 = 48^{\circ}$.
- **2.** If $m \angle 5 = 42^{\circ}$, then $m \angle 7 = 42^{\circ}$.
- 3. $m \angle 5 + m \angle 7 = m \angle 6 + m \angle 8$
- **4.** $m \angle 5 + m \angle 8 = m \angle 6 + m \angle 7$

Make a sketch of the given information. Label all angles which can be determined.

- 5. Adjacent complementary angles where one angle measures 42°
- 7. A linear pair of congruent angles

- 6. Nonadjacent supplementary angles where where one angle measures 42°
- 8. Vertical angles which measure 42°

Solve for x.

9.

10.

11

12. Give a reason for each step of the proof.

Given: $\angle 1$ and $\angle 2$ are complementary.

$$\angle 1 \cong \angle 3, \angle 2 \cong \angle 4$$

Prove: $\angle 3$ and $\angle 4$ are complementary.

Statements

1. ∠1 and ∠2 are complementary.

2.
$$m \angle 1 + m \angle 2 = 90^{\circ}$$

3.
$$\angle 1 \cong \angle 3$$
, $\angle 2 \cong \angle 4$

4.
$$m \angle 1 = m \angle 3$$
, $m \angle 2 = m \angle 4$

5.
$$m \angle 3 + m \angle 2 = 90^{\circ}$$

6.
$$m \angle 3 + m \angle 4 = 90^{\circ}$$

7. $\angle 3$ and $\angle 4$ are complementary.

- Reasons

 1. Given
- **2**. _ ?__
- 3. Given
- 4. _?_
- 5. _?
- 6. _?_
- **7.** <u>?</u>

13. Write a two-column proof.

Given: $\angle 2 \cong \angle 3$

Prove: $\angle 1 \cong \angle 4$

