Unit 2
Basic Concepts of Object-Oriented Programming
	Objectives:

· Introduction to object-oriented development and object-oriented programming

· Definition and interaction of objects

· Advantages of abstract data types

· Data hiding and encapsulation

· Understanding the concepts of class and inheritance

Expected Lecture Hours: hours

Learning Activities:

Assignments:

Introduction

2.1 Introduction to object-oriented development and object-oriented programming

· Origins and Features of Java Technologies

· Java Language Basic

· Class(類別), Field, Method declaration

· Name Convention

· Arithmetic, Logic Conditional Operation

· Mathematic support

· Exception Handling

2.1.1 The Origins of Java Technologies

· Investigated by Sun at 1991

· James Gosling, the father of Java, develop a new language called Oak based on C++

· Renamed to Java, American slang means “Coffee”, at 1994 to imply something exciting and hip

2.1.2 The Features of Java

· Cross-platform

· Simple

· Object Oriented

· Distributed

· Robust

· Secure

· Portable

· Interpreted

· High Performance

· Multithreaded

· Dynamic

Cross Platform(跨平台)

Java program is compiled to Machine-Independent Bytecode, assembly language for an idealized Java virtual machine (JVM), and run on JVM/JIT (Just In Time compiler that first compiles the Bytecode to native code, then executes the result).

Figure 2.1.2.1

Simple(精簡)

· Similar to C++ but cleaned up many of the most complicated((複習) syntactic(語法的) features. (No header files, make files)

· Automatic memory management(自動化記憶體管理) and simplified pointer(指標) handling

· Garbage collector (doles out memory when it is needed and reclaims memory from objects that can no longer be accessed.

· Object (any non-primitive data type) is always passed as an reference (pointer)

Object Oriented(物件導向)
· Java is pervasively(普遍) and consistently(一致) object oriented

· All methods are associated with objects/classes. It is not possible to access a function without an object reference or class reference (static method).

· Almost all data types are object.

Distributed (分散式的)

· Java is a Network programming language, it facilitates in network communication. Furthermore, it is an Object Oriented language; the objects needed in running can be distributed in network.

Robust (強韌的)

· Two special features make Java more robust than others language, they are garbage collection(自動記憶體回收) and exception handling(例外處理).

· Garbage Collection: Java Virtual Machine will release the memory which are no longer used, this polices can prevent lack of memory.

· Exception Handling: Runtime Error can be prevented by this function. Entire Exception handling methods will be centralized in a functions, collapse of a program can be prohibited.

Secure (安全的)

· Security is the first concern in Network environment. So Java will specially focus on security. Entire memory access should be done by dynamic memory allocation of JVM, i.e. user cannot access memory by program

Portable

· Portability of Java is achieved by its “Cross Platform” feature. Furthermore, Java build up many interface of “Class Library”, e.g. AWT, java application only call the interface of Class Library, JVM will find the implementation in different platform when the program is ran.

Interpreted

· Unlike C++, Java is a interpreted language. Java program will be convented to ByteCode instead of Machine Code after complile. Java ByteCode will be interpreted to machine code by JVM.

High Performance
· Though Java applications should link many library at runtime, but the format of ByteCode is well design to generate machine code, so the performance of java program is likely the same as C++ program.

Multithreaded
· Java program support the function of multithreaded, i.e. more than one process can be executed concurrently. According to this feature, the CPU resource occurpted by java program is much less than traditional single thread program.

Dynamic

· Different from other programming language, java will only load the objects/library when its is used.

Review Questions for 2.1
1. Briefly explain the features of java

2. give a advantage of multithreaded program.

2.2 Understand objects and class and relationship between object and class

Object-oriented programming (OOP) involves programming using objects. Object represents anything in the real world.

Objects have state (properties屬性) and behavior (method方法)

Classes are constructs that define objects. In a java class, data are used to describe(描寫) properties, and methods are used to define behaviors(行為). A class for an object contains a collection of method and data definitions.

Example of java (Student need to write down the code form the screen)

A class is a blueprint(籃圖) that defines what an object’s data and methods will be.

An object is an instance(存在) of a class.

2.3 Definition of Classes, Objects and Variables

2.3.1 Declaring and Creation Objects

In order to declare(宣告) an object, you must use a variable to represent it, just like to declare a variable(變數).

ClassName objectName

	Declaring a variable
	Declaring a object

	int i;
	Circle myCircle;

But the declaration of an object simply associates the object with a class, making the object an instance of that class. The declaration does not create the object, not like creates a variable, create and allocates(分配) appropriate memory space in one statement.

ObjectName = new ClassName();

You can combine the declaration and creation together in one statement:

ClassName objectName = new ClassName();

2.3.2 Garbage(垃圾) Collection

Garbage means an object no longer useful. Java runtime system can detects them and automatically(自動) release(釋出) the memory space.

2.3.3 Accessing an Object’s Data and Methods

After an object is created, its data and methods can be accessed using the following dot notation:

ObjectName.data (References an object’s data

ObjectName.method (References an object’s method

2.3.4 Constructors(建構子)

Constructor is used to initialize(存在) an object’s data in various values. You can use a constructor to assign(指定) an initial value when you create an object.

Circle(double r)

//Construct a circle with the specified radius

{

radius = r;

}

 Circle()

//Construct a circle with the default radius

{

Radius = 1.0;

}

2.3.5 Visibility Modifiers and Accessor Methods

public(公用): Defines classes, methods, and data in such a way that all programs can access them.

Private(私有): Defines methods and data in such a way that they can be accessed by the declaring class, but not by any other classes.

The private data fields cannot be accessed by the object thorough a direct reference(真接參考). But often the client needs to retrieve(取得) and modify(更改) the data field. To make the private data fields accessible(可存取的), you can provide getter methods and setter methods for the private data fields. These methods are referred to as accessor methods or Interface(介面).

A getter method has the following signature:

public returnType getPropertyName()

A setter has the following signature:

Public void setPropertyName(dataTyhpe propertyValue)

2.3.6 Class Variables, Constants, and Methods

The variable in class is known as an instance variable(存在變數), which belong to every instance(object) of the class, they are not shared(共用) among objects of the same class. If you want to share a variable to the objects, use class variables.

static int numOfObjects;

To declare a class constant(類別常數), add the final keyword in the above declaration.

public final static double PI = 3.14;

2.3.7 The Keyword this

If a local variable(區域變數) has the same name as an instance or a class variable, the local variable takes precedence(優先)and the same instance or class variable is hidden(隱藏). Hidden class variable can be accessed simply by using the ClassName.classvariable reference. Hidden instance variable can be accessed by using the keyword this.

Public Circle(int i)

{

this.i = I

}

2.4 Interaction of Classes, Objects and Variables

Object –Orient Programming involved with getting objects to work together. Since objects are modeled using classes, the relationship(關係) among objects of different classes is the same as the relationship among classes: association(聯系), aggregation(集合), and inheritance(繼).

Association: represents a general binary relationship that describes an activity(活動) between two classes.

Aggregation: special form of association that represents an ownership relationship between two classes.

Inheritance: represents a relationship of parent-child relation. It will be discussion detail later.

Discussion 2 (15 minutes)

In groups of three, discuss the differences between the 3 type of relationship in Class. Summarize your conclusions in the table below:

	Inferitance
	Association
	Aggregation

	1.

2.

3.

4.

Other:

	
	

Review Questions for 2.2

2.3 Advantages of abstract data types

Review Questions for 2.3
2.4 Data hiding and encapsulation(封裝)

OOP encapsulates data and method into objects.

A system/program is a collection of objects to perform special task

Objects communicate(通訊) with one another across well-defined interfaces(介面).

In Java, the unit of programming is the class (Object is an instance of a class)

OOP programmer concentrate(專注) on creating their own user-defined type called classes (referred as programmer-defined type)

Class contains data and the set of methods that manipulate(處理) the data

public class Time1 extends Object {

private int hour;

private int minute;

private int second;

public void SetHour (int h) {

hour=((h>=0 &&h<24)?h:0);

}

public void SetMinute(int m){

minute=((m>=0 && m<60)?m:0);

}

public int GetHour();

return hour;

}

}

Information Hiding

Classes normally hide their implementation details from the clients(客戶端) of the classes

Using Set and Get methods

Public class Time1{

private int hour;

public void setHour(int h){

hour = h;

}

public int getHour(){

return hour;

}

}

Private instance variables can be manipulated only by methods of the class.

Review Questions for 2.4
1. What is the advantage of information hiding?
2.5 Understanding the concepts of class and inheritance

Introduction

Inheritance means that you can derive new classes from existing classes. Inheritance models the is-a relationship, which is a powerful concept in Java.

2.5.1 Superclasses(父類別) and Subclasses(子類別)

In java, a class c1 derived from another class c2 is called a subclass (child class/extended class/derived class), and c2 is called a superclass(i.e. parent class/base class). The methods defined in the superclasses can be reuse or change in the subclass; you also can create new data and new methods in subclass as well.

public class Circle()

{

private double length;

}

Using the super Keyword

· To call a superclass constructor

super(), or super(parameters);

· To call a superclass method

super.method(parameters);

2.5.2 Overriding Methods

Method overriding means a subclass inherits methods from a superclass. Sometimes, it is necessary for the subclass to modify the methods defined in the superclass.

Sample Code: (you should write down the code from screen)

The protected modifiers

Any class in the same package or its subclasses can access protected data or method in a public class.

2.5.3 Abstract Classes(抽象類別)

In OOP world, superclass is more general and less specific than its subclass, sometime a superclass is so abstract that it can not have any specific instances (object).

You can’t create object from abstract classes by using the new operator. Abstract method is a method signature without implementation, the implementation will be provided by its subclasses.

2.5.4 Polymorphism(同體多型)

Polymorphism means “many forms” in Greek. Java Virtual Machine can determine which code to run at runtime by polymorphism, you can give multiple methods with the same name but different operations in the same class or in different classes.

Method overloading is 1 example of polymorphism.

Review Questions for 2.5
Keywords and Phrases

Reading List

Reference

Java Application

Java ByteCode

Java Compiler

JVM in Windows

JVM in Unix

JVM in Macintosh

hour

sethour()

sethour(11);

Message “sethour(11)” is sent to this object.

sethour function member sets new value of data “hour”

The value of “hour” is retrieved by function gethour.

gethour()

Message “gethour()” is sent to this object.

hr = gethour();

The value of data “hour” is returned and assigned to hr.

Using Electricity as power supply

Electronic Machine Class

Computer

Using Electricity as power supply

