Unit 5 Language Basics

	Objectives:

· understanding the Variable in Java

· understanding the Operator in Java

5.1 Variables

Name and type for each variable should be well defined in your program. The variable's name must be a legal identifier. The variable's type determines what values it can store and what operations can be performed. To declare a variable, type and name should be looks like this:

type name

e.g. int i;

5.1.1 Data Type

Variable’s data types determine the values that the variable can contain and the operations that can be performed on it. E.g. Integers can contain only integral values You can perform calculation, such as addition, on integer variables.

The Java programming language has two categories of data types: primitive and reference. Primitive type variable contains a single value

Primitive Data Types

	Keyword
	Description
	Size

	(integers)

byte

short

int

long
	Byte-length integer

Short integer

Integer

Long integer
	8-bit

16-bit

32-bit

64-bit

	(real numbers)

float

double
	Single-precision floating point

Double-precision floating point

	32-bit

64-bit

	(other types)

char

Boolean
	A single character

A boolean value (true or false)
	16-bit

true or false

Table 5.1

You can put a literal primitive value directly in your code. E.g.

int num = 3;

Arrays, classes, and interfaces are reference types. The value of a reference type variable, in contrast to that of a primitive type, is a reference to (an address of) the value or set of values represented by the variable.

A reference is called a pointer, or a memory address in other languages, e.g. C/C++. The Java programming language does not support the explicit use of addresses like other languages do. You use the variable's name instead.

[image: image1.png]

5.1.2 Variable Names

In the Java programming language, the following must hold true for a simple name:

1. It must be a legal identifier. An identifier is an unlimited series of Unicode characters that begins with a letter.

2. It must not be a keyword, a boolean literal (true or false), or the reserved word null.

3. It must be unique within its scope. A variable may have the same name as a variable whose declaration appears in a different scope.

Tips : Variable names begin with a lowercase letter, and class names begin with an uppercase letter. If a variable name consists of more than one word, the words are joined together, and each word after the first begins with an uppercase letter, like this: isVisible.

5.1.3 Variable Initialization

Local variables and member variables can be assigned a value when they're declared. it is called initialization.

5.1.4 Final Variables

You can declare a variable in any scope to be final. The value of a final variable cannot change after it has been initialized. Such variables are similar to constants in other programming languages.

To declare a final variable, use the final keyword in the variable declaration before the type:

final int num = 0;

5.2 Operators

An operator performs a function on operand(s).

The unary operators(An operator that requires one operand) support either prefix or postfix notation. Prefix notation means that the operator appears before its operand:

operator op //prefix notation

e.g. ++ i;

Postfix notation means that the operator appears after its operand:

op operator //postfix notation

e.g. i ++;

All of the binary operators use infix notation, which means that the operator appears between its operands:

op1 operator op2 //infix notation

The ternary operator is also infix; each component of the operator appears between operands:

op1 ? op2 : op3 //infix notation

In addition to performing the operation, an operator returns a value. The return value and its type depend on the operator and the type of its operands.

5.2.1 Arithmetic Operators

The Java programming language supports various arithmetic operators for floating-point and integer numbers. These operators are +, -, *, /, and %.

Operator Use Description

	+
	op1 + op2
	Adds op1 and op2

	-
	op1 - op2
	Subtracts op2 from op1

	*
	op1 * op2
	Multiplies op1 by op2

	/
	op1 / op2
	Divides op1 by op2

	%
	op1 % op2
	Computes the remainder of dividing op1 by op2

	++
	op++
	Increments op by 1; evaluates to the value of op before it was incremented

	++
	++op
	Increments op by 1; evaluates to the value of op after it was incremented

	--
	op--
	Decrements op by 1; evaluates to the value of op before it was decremented

	--
	--op
	Decrements op by 1; evaluates to the value of op after it was decremented

Tips : Note that when an integer and a floating-point number are used as operands to a single arithmetic operation, the result is floating point. The integer is implicitly converted to a floating-point number before the operation.

5.2.2 Relational and Conditional Operators

Relational operators are used to compares two values and find out the relationship between them.

Operator Use Returns true if

	>
	op1 > op2
	op1 is greater than op2

	>=
	op1 >= op2
	op1 is greater than or equal to op2

	<
	op1 < op2
	op1 is less than op2

	<=
	op1 <= op2
	op1 is less than or equal to op2

	==
	op1 == op2
	op1 and op2 are equal

	!=
	op1 != op2
	op1 and op2 are not equal

Relational operators often are used with conditional operators to construct more complex decision-making expressions. The Java programming language supports six conditional operators-five binary and one unary--as shown in the following table.

Operator Use Returns true if

	&&

	op1 && op2

	op1 and op2 are both true, conditionally

evaluates op2

	||

	op1 || op2

	either op1 or op2 is true, conditionally evaluates op2

	!

	! op

	op is false

	&

	op1 & op2

op1

	op1 and op2 are both true, always evaluates and op2

	|

	op1 | op2

	either op1 or op2 is true, always evaluates op1 and op2

	^

	op1 ^ op2

	if op1 and op2 are different--that is if one or the

other of the operands is true but not both

5.2.3 Assignment Operators

You use the basic assignment operator, =, to assign one value to another.

The following table lists the shortcut assignment operators and their lengthy equivalents:

Operator Use Equivalent to

	+=
	op1 += op2
	op1 = op1 + op2

	-=
	op1 -= op2
	op1 = op1 - op2

	*=
	op1 *= op2
	op1 = op1 * op2

	/=
	op1 /= op2
	op1 = op1 / op2

	%=
	op1 %= op2
	op1 = op1 % op2

	&=
	op1 &= op2
	op1 = op1 & op2

	|=
	op1 |= op2
	op1 = op1 | op2

	^=
	op1 ^= op2
	op1 = op1 ^ op2

	<<=
	op1 <<= op2
	op1 = op1 << op2

	>>=
	op1 >>= op2
	op1 = op1 >> op2

	>>>=
	op1 >>>= op2
	op1 = op1 >>> op2

