Unit 6 Control Flow Statements

	Objectives:

· Understanding the Looping in Java

· Understanding the Branching in Java

6.1 Looping

6.1.1 The for Statement

The for statement provides a compact way to iterate over a range of values. The general form of the for statement can be expressed like this:

for (initialization; termination; increment) {

 statement

}

The initialization is an expression that initializes the loop - it's executed once at the beginning of the loop. The termination expression determines when to terminate the loop. When the expression evaluates to false, the loop terminates. Finally, increment is an expression that gets invoked after each iteration through the loop.

e.g.

for (int i = 1; i<=10;i ++)

{

sum = sum + i;

}

6.1.2 The While Statements

You use a while statement to continually execute a block of statements while a condition remains true. The general syntax of the while statement is:

while (expression) {

 statement

}

First, the while statement evaluates expression, which must return a Boolean value. If the expression returns true, then the while statement executes the statement(s) within the loop. The while statement continues testing the expression and executing its block until the expression returns false.

e.g.

while (i<=10) {

sum = sum + i;

i++;

}

6.1.3 The Do-While Statements

The Java programming language provides another statement that is similar to the while statement--the do-while statement. The general syntax of the do-while is:

do {

 statement(s)

} while (expression);

Instead of evaluating the expression at the top of the loop, do-while evaluates the expression at the bottom. Thus the statements within a do-while must be executed at least once.
6.2 Branching Statements

6.2.1 The if/else Statements

The if statement enables your program to selectively execute which statements based on some criteria.

if (expression) {

 statement(s)

}

The block within if is executed if a condition is true.

If (i>10) {

System.out.println(“i is greater than 10”);

}

You use the else statement to perform a different set of statements if the expression is false.

if (i = = j) {

 System.out.println(“i is equals to j”);

} else {

 System.out.println(“i is not equals to j”);

}

The else block is executed if the expression in if part is false. Another form of the else statement, else if, executes a statement based on another expression. An if statement can have any number of companion else if statements but only one else.

In the switch statement is the break statement after each case. Each break statement terminates the enclosing switch statement, and the flow of control continues with the first statement following the switch block. The break statements are necessary because without them, the case statements fall through. That is, without an explicit break, control will flow sequentially through subsequent case statements.

