Unit 7 Swing GUI

7.1 Swing Components and the Containment Hierarchy

	frame (JFrame)
	Top-level container. Used for other Swing components to paint themselves.

	panel/pane (JPanel)
	Intermediate container. It is used to simplify the positioning of the button and label.

	button (JButton), label (JLabel)

	It is used to present information to/get input from user.

7.1.1 Containment hierarchy

[image: image1.png]IFrane I

Every Swing program has multiple levels in its containment hierarchy. The root of the containment hierarchy must be top-level container. The top-level container provides a place for its descendent Swing components to place.

Every top-level container indirectly contains an intermediate container known as a content pane. It contains all of the visible components in the window's GUI. (The big exception to the rule is that if the top-level container has a menu bar, then by convention the menu bar goes in a special place outside of the content pane.)

To add a component to a container, you use one of the various forms of the add method. The add method has at least one argument -- the component to be added. Sometimes an additional argument is required to provide layout information. For example, the last line of the following code sample specifies that the panel should be in the center of its container (the content pane).

Here is the code that adds the button and label to the panel, and the panel to the content pane:

frame = new JFrame(...);

button = new JButton(...);

label = new JLabel(...);

pane = new JPanel();

pane.add(button);

pane.add(label);

frame.getContentPane().add(pane, BorderLayout.CENTER);

7.1.2 Layout Management

Layout management is the process of determining the size and position of components. By default, each container has a layout manager -- an object that performs layout management for the components within the container. Components can provide size and alignment hints to layout managers, but layout managers have the final say on the size and position of those components.

The Java platform supplies five commonly used layout managers: BorderLayout, BoxLayout, FlowLayout, GridBagLayout, and GridLayout. These layout managers are designed for displaying multiple components at once, and are shown in the preceding figure. A sixth provided class, CardLayout, is a special-purpose layout manager used in combination with other layout managers. You can find details about each of these six layout managers, including hints for choosing the appropriate one, in Using Layout Managers.

Whenever you use the add method to put a component in a container, you must take the container's layout manager into account. Some layout managers, such as BorderLayout, require you to specify the component's relative position in the container, using an additional argument with the add method. Occasionally, a layout manager such as GridBagLayout requires elaborate setup procedures. Many layout managers, however, simply place components based on the order they were added to their container.

All this probably sounds more complicated than it is. You can usually either copy code from our examples in Using Swing Components or look up the individual layout manager in Using Layout Managers. Generally, you only ever set the layout manager of two types of containers: content panes (which use BorderLayout by default) and JPanels (which use FlowLayout by default).

Doing Without a Layout Manager (Absolute Positioning)

If you want to customize a container size and position absolute Positioning can be used.

public class NoneWindow extends JFrame {

 . . .

 private boolean laidOut = false;

 private JButton b1, b2, b3;

 public NoneWindow() {

 Container contentPane = getContentPane();

 contentPane.setLayout(null);

 b1 = new JButton("one");

 contentPane.add(b1);

 b2 = new JButton("two");

 contentPane.add(b2);

 b3 = new JButton("three");

 contentPane.add(b3);

 Insets insets = contentPane.getInsets();

 b1.setBounds(25 + insets.left, 5 + insets.top, 75, 20);

 b2.setBounds(55 + insets.left, 35 + insets.top, 75, 20);

 b3.setBounds(150 + insets.left, 15 + insets.top, 75, 30);

 . . .

 }

 . . .

}

Event Handling

When user clicks a mouse button, an event occurs. Any object can be notified of the event. If you want your interface can handle the event, you only need to do is registered as an event listener on the appropriate event source and implements the appropriate handling function.

	Act that results in the event
	Listener type

	User clicks a button, presses Return while typing in a text field, or chooses a menu item
	ActionListener

	User closes a frame (main window)
	WindowListener

	User presses a mouse button while the cursor is over a component
	MouseListener

	User moves the mouse over a component
	MouseMotionListener

	Component becomes visible
	ComponentListener

	Component gets the keyboard focus
	FocusListener

	Table or list selection changes
	ListSelectionListener

Each event is an object that holds the information about the event and identifies the event source. Event sources are components. As the following figure shows, each event source can have multiple listeners registered on it. Conversely, a single listener can register with multiple event sources.

[image: image2.png]event Tistener

event object
event Tistener

event Tistener

Whenever you want to detect events from a particular component, first check the how-to section for that component. All of the component how-to sections can be found in the Using Swing Components lesson. The how-to sections give examples of handling the events that you're most likely to care about. In How to Make Frames (Main Windows), for instance, you'll find an example of writing a window listener that exits the application when the frame closes.

How to Implement an Event Handler

Every event handler requires three bits of code:

In the declaration for the event handler class, code that specifies that the class either implements a listener interface or extends a class that implements a listener interface. For example:

public class MyClass implements ActionListener {

Code that registers an instance of the event handler class as a listener upon one or more components. For example:

someComponent.addActionListener(instanceOfMyClass);

Code that implements the methods in the listener interface. For example:

public void actionPerformed(ActionEvent e) {

 ...//code that reacts to the action...

}

Let's investigate a typical event-handling scenario by looking at how buttons (JButton) handle mouse clicks. To detect when the user clicks an on-screen button (or does the keyboard equivalent), a program must have an object that implements the ActionListener interface. The program must register this object as an action listener on the button (the event source), using the addActionListener method. When the user clicks the on-screen button, the button fires an action event. This results in the invocation of the action listener's actionPerformed method (the only method in the ActionListener interface). The single argument to the method is an ActionEvent object that gives information about the event and its source.

[image: image3.png]

Event handlers can be instances of any class. Often, an event handler that has only a few lines of code is implemented using an anonymous inner class -- an unnamed class defined inside of another class. Anonymous inner classes can be somewhat confusing at first, but once you're used to them they make code clearer by keeping the implementation of an event handler close to where the event handler is registered. For information about using inner classes, see Using Adapters and Inner Classes to Handle Events.

