
Pathologically Eclectic Rubbish Lister
Instructor Handout

Author: Reuben Francis Cornel

Contents

1 Perl Design Philosophy 2

2 Running perl Programs 2

3 Basic Syntax Overview 2

4 perl Variable Naming Syntax 2

5 Scalars 3
5.1 String Representation . 3

5.2 Number Representation . 3

5.3 Scalar Variables . 3

5.4 The Default Variable . 4

6 Operators 4

7 Arrays 5
7.1 List Literals . 5

7.2 Array Variables . 6

7.3 Working with Arrays . 6

7.3.1 Slicing Arrays . 6

7.3.2 Array Functions . 7

7.4 Array Miscellany . 7

7.4.1 Context . 7

7.4.2 Array Interpolation . 7

7.4.3 The Default Array . 7

8 Control Structures 8
8.1 Truth Values in Perl . 8

8.2 If Construct . 8

8.3 While Construct . 8

8.4 Do While Construct . 9

8.5 For Construct . 9

8.6 Foreach Construct . 9

9 Associative Arrays(Hashes) 9
9.1 Hash Functions . 9

9.1.1 Keys and Values . 9

9.1.2 Each . 9

10 Regular Expressions In Perl 9
10.1 Regular Expression Operators . 10

10.2 Regular Expression Functions . 10

11 File Handling 10
11.1 Opening a file for reading . 10

12 Subroutines 11
12.1 Defining Subroutines . 11

13 Perldoc 11

1

14 Conclusion 11

• Take the session a bit slowly

• Be a bit more elaborate when explaining

1 Perl Design Philosophy

• perl is an acronym for Practical Extraction and Report Language. But I
guess the title is a rough translation of that.

• perl was developed by Larry Wall, in 1983, because he felt lazy to use other
tools.

• perl today gets is shape due to the various anthropological and linguistic
studies which have affected its founder in the past.

2 Running perl Programs

• A perl program can be run in two ways.

– Command Line: You invoke the perl interpreter and the file name Show example1.

which has the script.

$ perl filename

– Standalone Script: This program is run directly of the command line. Show example1b.
Give brief explanation of

interpreter line
But you have to call the perl interpreter in the interpreter line.

$ chmod +x filename

$./filename

3 Basic Syntax Overview

• All statments in perl end with a semicolon. For example

print "Hello World";

• Comments start with a # and this extends to the end of the line. Mention there is no con-

cept of multiple line com-

ments in perl#This is a comment

• Whitespaces are irrelevant in statements, but not inside quotes.

4 perl Variable Naming Syntax

• The first character of the variable name tells you the type of variable.

• The rest of the variable name is a user defined. This can start with an
underscore or a letter, and then can be followed by any letters, underscores
or digits. Show example2. This

demos case of variables is

significant.• The case of the variables is significant.

2

5 Scalars

• Scalar data is the most basic datatype in perl. It can either be a number or
a string. We shall look at how strings and numbers are represented before
actually moving on to use them in scalar variables.

5.1 String Representation

• We start by discussing about string literals in Perl. Perl provides us with
two ways to represent string literals.

– Single Quoted Strings: Here most special characters are not inter-
preted. Variable values are not substituted. Only the “‘” and the back Show Example 5

slash character have to be escaped

– If you want a new line character in single quotes just type it in.

– Double Quoted Strings: These are string literals which are delimited
by ”. The advantage of using these are you can interpolate the values
into a string.

– All special characters have to be escaped if you want them to be displayed
when you use double quotes. These characters can be escaped using the
backslash character.

5.2 Number Representation

• Representation of numbers in perl is very much like the number represenations Show example7

in C. Unlike strings, numbers don’t have to be quoted.

• Apart from the normal representations. Perl also allows you to represent
numbers in exponential format. For example .005 can be represented as 5E-3

5.3 Scalar Variables

• In perl both numeric and string values can be stored in scalar variables.

• Scalar Variables are created just by assigning values to names. But it must
be remember that all scalars are prefixed by a $. Show example6.pl

• Scalar variable names are case sensitive. Show example6a.pl -

Chocolate question
• But what if a variable is accessed but no value has been assigned to it? It has a value undef

Show example6b.pl
• As you can see this could be a source of bugs. If you want to find out

undefined variables, you have to enable perl’s warning messages. This is Show example6ba.pl

done by adding -w to the command line. Show example8.pl

• We can check if a variable is defined or undefined using the defined function
call. This returns 1 if the scalar is defined else a blank string represented by
“”.

3

5.4 The Default Variable
first analyse exam-
ple21• The default variable in perl is an implicit scalar variable which is defined by

the perl interpreter automatically.

• It obtains its values based on the context of the situtation. This can become
a cause for a lot of misunderstanding.

• Please do not use this variable if you expect other people to read
your code

• The default variable can be accessed using $.

6 Operators

• Perl’s scalar operators are almost similar to operators provided by most pro- Show example8.pl

gramming languages. The table below summarises the mathematical opera-
tors.

Operator Meaning
Mathematical Operators
+ Addition
- Subtraction
* Multiplication
/ Division
% Modulo
** Exponentiation
++ Auto increment
-- Auto decrement

• Comparing scalars in perl is as simple as comparing values in any other lan- Show example9.pl

guage. But since there is automatic conversion between strings and numbers
you must tell perl which type of comparison you want to use. The table be- Show example10.pl -

This is for cmp oper-
ator

low assumes that the comparision you are going to perform is of the format
$left <OP> $right, where <OP> is the operator.

4

Operation Numeric Version String Version Returns

less than < lt 1 iff. $left is less than
$right

less than or equal to <= le 1 iff. $left is less than
or equal to $right

greater than > gt 1 iff. $left is greater
than $right

greater than or equal to >= ge 1 iff. $left is greater
than or equal to $right

equal to == eq 1 iff. $left is the same
as $right

not equal to != ne 1 iff. $left is not the
same as $right

compare <=> cmp -1 iff. $left is less than
$right, 0 iff. $left is
equal to $right 1 iff.
$left is greater than
$right

• Perl has two string operators, one for concatenation, one for string duplica-
tion. Show example11.pl

– The “.” operator is the string concatention operator.

– “x” is the duplication operator.

7 Arrays

• Arrays in perl are conceptually closer to the lists of LISP, but syntax used is
like the syntax used by C.

• Perl arrays are dynamic. That is they grow and shrink as required.

• Perl arrays are accessible just like C arrays. So you can subscript anywhere
directly. As a result you have advantages of a dynamic list as well as a static
array.

• Since items of a list are scalars, there is no distinction between numeric and
string values.

7.1 List Literals

• Like scalar literals it is also possible to write list literals in your code. Of-
course inserting string literals into these list literal require proper quoting.

• There are two primary ways to quote list literals

5

– () - This is the basic way to write list literals. When writing elements
using this all string have to be double/single quoted. Numbers as usual
don’t have to be quoted.

– qw - This is called the quoting operator. This operator has a slightly
funny syntax. The quoting operator is followed by a “stop character”.
It will keep on eating elements in a list till it reaches the next “stop
character”. The advantage of this is you do not need to quote strings in
any additional way since qw does it for you.

Example Meaning
(); # this list has no elements; the empty list
qw//; # another empty list
(”a”, ”b”, ”c”, 1, 2, 3); # a list with six elements
qw/hello world how are you today/; # another list with six elements

– Finally we have a slight misfit here, its the “..” operator. This operator
helps build list from initial values.

Example Meaning
(1 .. 100); # a list of 100 elements: the numbers from 1 to 100
(’A’ .. ’Z’); # a list of 26 elements: the uppercase letters From A to Z
(’01’ .. ’31’); # a list of 31 elements: all possible days of a month

7.2 Array Variables

• Variable which have list literals assigned to them are called array variables. Show example12.pl

Array variables are represented by preceding “@” symbol.

• You can also concatenate a number of lists simply by listing them together Show example12a.pl -
CQand using comma as the delimiter

• When you create a new array, a set of scalar variables get created automati-
cally, first of all for a list of n elements. There are scalar variables $array[0],
$array[1], ... ,$array[n-1] that contain the first, second, ... nth variable ele-
ments in the array.

• Another scalar variable is associated with an array variable, @array, is $#array.Show example12b.pl

This gives the number of elements of the array. This scalar like any other
scalar can be modified, using appropriate operations. But make sure, that
you don’t set it to -1, this would delete your list.

7.3 Working with Arrays

7.3.1 Slicing Arrays

• Say for some reason you are hungry and want a section of cake what would
you do? cut a slice of the cake isn’t it.

• In the same way when you want to create a list which has a subsection of
elements of a bigger list, you slice the bigger list to get a piece of it.

• The [] operators help you slice an array and get a section of with, ofcourse Show example13.pl

that is generally with the help of the .. operator.

6

7.3.2 Array Functions

• There are a set of functions that work on arrays, the most basic ones are
listed below.

• push: Pushes an element at the top of the list. Show example14.pl

• pop: Pops an element from the top of the list. Show example15.pl

• unshift: Adds an element at the end of the list

• shift: Removes an element from the end of the list.

• split: Splits a string into an array based on a specified seperator. Show example22.pl

• join: Join an array into a single string based on seperator.

7.4 Array Miscellany

7.4.1 Context

• It may have occurred to you by now that in certain places we can use a list,
and in other places we can use a scalar. Perl knows this as well, and decides
which is permitted by something called a context.

• There are two types of contexts

– List Context

– Scalar Context

• Perl knows which context is to be used when that is why we can use variables
in different places and get different results.

@things = qw/a few of my favorite/;
$count = @things;
CQ In the above statement the context is scalar so the lenght is put

in
@moreThings = @things;
In the statement the context is a list therefore a list assignment is

done

7.4.2 Array Interpolation

• An array can be interpolated with in a double quoted string, the result is Show example16.pl

same as if any other scalar would have been interpolated.

7.4.3 The Default Array

• This creature is similar to the default variable, again this is a context based
variable, hence avoid using it when you can. Unlike other variable, if you
have to access a subscript of the default array you would have to access the
subscript as shown $ [n]. Where n is the subscript number.

7

8 Control Structures

8.1 Truth Values in Perl

• Almost all control structure work on boolean values returned by expressions.
But which of these values are true and which are false?

• Everything in perl is true except.

– The strings “” (the empty string) and “0” (the string containing only the
character, 0), or any string expression that evaluates to either “” (the
empty string) or “0”.

– any numeric expression that evaluates to a numeric 0.

– any value that is not defined (i.e., equivalent to undef).

• Try out the below exercise

Expression Boolean value
0 false
0.0 false
”” false
”0” false
”0.0” true - This is cause it say “0” only
undef false
42 - (6 * 7) false
”0.0” + 0.0 false - This is because “0.0” is converted to integer = 0 + 0.0 =0
”foo” true

8.2 If Construct

• This is the simple if construct provided by most programming languages. Its
syntax is as shown.

if (expression) {

execute this code

} elsif (another_expression) {

execute this code

} else {

execute this code

}

8.3 While Construct

• The syntax of the while construct is shown below.

while (expression) {

execute this code;

}

8

8.4 Do While Construct

• The syntax of the while construct is shown below.

do {

execute this code

} while (expression);

8.5 For Construct

• The syntax of the for construct is shown below.

for(Initial_Statement; expression; Increment_Statement) {

execute this code

}

8.6 Foreach Construct

• The foreach structure takes a scalar, a list and a block, and executes the Show example17.pl

block of code,setting the scalar to each value in the list, one at a time.

9 Associative Arrays(Hashes)

• The associative array more popularly known as the hash tables is the third
natively supported datatype of perl.

• Unlike scalars and arrays, we don’t have literals for hashes.

• A hash is demarkated by a % symbol preceding the identifier. Show example19.pl

• Unlike arrays hashes can be subscripted by arbitary scalar values, we use {
} to subscript values.

9.1 Hash Functions

9.1.1 Keys and Values

• The keys function gives a list of all keys in a hash Show example20.pl

• The values function gives a list of all values in a hash

9.1.2 Each

• This returns a key-value pair from the hash. Show example18.pl

10 Regular Expressions In Perl

• Perl supports most of the regular expression syntaxes supported by UNIX.
It has full support for Basic, Interval and Tagged Regular expressions.

9

10.1 Regular Expression Operators

• =˜This operator is used check if a given pattern exists in a string. The Show example23.pl

pattern to the searched is given in the string which is surrounded by two
forward slashes.

• When we use tagged regular expressions, the values which are extracted from Show example24.pl

the string are stored in scalar variables which denoted by $1, $2 $n, where
n is the number of the tag.

10.2 Regular Expression Functions

• The s function. This function performs the job on a scalar variable what sed
perform on a line, in simple words substitution. Show example25.pl

• The tr function. This function performs the job done by the tr command.

11 File Handling

11.1 Opening a file for reading

• For opening a file Perl provides the open function. The syntax of the function
is as shown below.

open (File Handle, Filename)

• A file is opened for reading as shown below. INFILE here is the file handle. Show example26.pl

This file handle will be used by functions to read and write to a file.

open (INFILE, ‘‘/home/reuben/tempfile’’);

• A file is opened for writing with shell like operators >, >>, having their
usual meanings.

open (OUTFILE, ‘‘>/home/reuben/tempfile’’); #Overwrite

open (OUTFILE, ‘‘>>/home/reuben/tempfile’’); #Append

• To read from a file handle do the following.

$variable=<FILEHANDLE>;

• To write to a file do the following.

print FILEHANDLE scalar ;

• By default, the standard input file handle is represented by STDIN. Therefore
if you want to read anything from the input all you have to do is. But
sometimes the word STDIN might be missing but it will still mean the same
thing.

$variable=<STDIN>;

• The EOF is signified by blank string.

• Filehandles can be closed using the close command. Syntax is as follows
close FILEHANDLE; Chocolate question - Write a perl verion of cat

10

12 Subroutines

• Until now, all the Perl programs that we have written have simply a set of
instructions, line by line. Like any good language, Perl allows one to write
modular code. To do this, at the very least, the language must allow the
programmer to set aside subroutines of code that can be reused. Perl, of Show example27.pl

course, provides this feature.

12.1 Defining Subroutines

• Defining a subroutine is quite easy. You use the keyword sub,

followed by the name of your subroutine, followed by a code block.

sub function name{ Code to be executed }

• When calling the function the function call may or may not be prefixed with
a “&” symbol.

• Arguments to functions are passed using the default array. There are 2 ways
to extract these arguments.

– Use the shift function on the default array. Show example28.pl

– Try getting the values from the default array directly.

• The return keyword is used to return arguments. You can use return to
return any possible legal value.

13 Perldoc

• A complete installation of perl comes with its inbuilt documentation, this is
called Perl Documentation or PerlDoc in short.

• Most linux systems come with a copy of Perldoc installed. To start perldoc,
all you have to do is type perldoc perltoc at the command line.

• You can select a section of the documentation by typing perldoc section

name.

14 Conclusion

• Perl in it self is a HUGE langauge. Trying to cover it is quite a challenge.

• The things which have been ignored in this presentation are Perl’s features
for network communication and object orientation, apart from that a whole
lot of packages.

• The advantage of using perl is it provides a way for both the novice and the
guru to write code in more than one way, hence true to its slogan “There is
more than one way to do it.”

The original copy of this document can be obtained from www.geocities.com/reuben cornel.

This document is released under GNU Free Documentation License, Version 1.1 or any later

version published by the Free Software Foundation with no Invariant Sections, no Front-Cover

Texts, and no Back-Cover Texts.

11

