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Abstract- A fully-differential, CMOS implementation of
a self-organizing, dual-synapse neuron with on-chip learning
for real-time facial feature extraction is presented. The
adaptation of the network follows Oja’s learning rule and the
synaptic weight vector is shown to adapt to the principal
component vector of the set of two-dimensional input vectors.

I. INTRODUCTION

Principal component analysis (PCA) is a powerful tool
for extracting features for face recognition.
Mathematically, PCA is a method of calculating the
eigenvector of an autocorrelation matrix with the largest
eigenvalue; i.e. the eigenvector that is most representative
of the data that make up the autocorrelation matrix. In one
sense, PCA is useful because it reduces the dimensionality
of multi-dimensional data to one dimension; a compression
of sorts.

PCA is also useful for generating features for face
recognition. When applied locally, to a small
neighborhood of pixels, PCA holds several advantages:
1) a combination of the results of many local analyses can
be rearranged into slightly different permutations, much
like that of the elastic graph matching to compensate for
distortion such as smiling, frowning, perspective changes,
etc. [1] and 2) it lends itself to analog VLSI
implementation.

II. BACKGROUND
A. Principal Component Vectors

A principal component vector has two important
characteristics. In terms of analysis, the principal
component vector preserves the most variation when the
data are projected onto it. In terms of synthesis, the
principal component vector does the best job of
reconstructing the original data from such aforementioned
projection.  Such  characteristics have  profound
implications in the simplest model of a linear neuron with
instar and outstar synaptic weight vectors, shown in Fig. 1.
While the inner product between the input vector and the
synaptic instar vector of the neuron performs analysis, the
resulting neural activation multiplied times the synaptic
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outstar vector performs synthesis. If both weight vectors
happen to be equal to the principal component vector of
the set of input vectors being presented, the difference
between the input and reconstructed output will be
minimal in the least squares sense.
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Fig. 1. Abbreviated signal flow graph of a single-neuron, dual-synapse
network for extracting the principal component of a set of input vectors.

Mathematically, the process is described by (1), (2),
and (3) and illustrated in Fig. 2. Analysis is performed by
the inner product between the input and instar vectors,
yielding a scalar which represents a projection of a two-
dimensional pattern into a one-dimensional subspace. The
original  two-dimensional input vector is then
approximately reconstructed as the outstar vector is
activated to the same degree that the neuron was excited
by analysis.
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Fig. 2. Signal flow graphs of (a) analysis and (b) synthesis parts of a
single-neuron.



B. Oja’s Learning Rule

A neural system that is designed to find the principal
component vector iteratively, must employ the Oja
learning rule [3], as given by (4) and (5) where w; is the j‘h
weight, x; is the 7™ input, y is the inner product between the
input and instar vectors, and c is the learning rate.

Wi = C)’(xj —ywj)

y= iwjxj

j=t

4
)

The Oja rule is typical of the self-organizing paradim;
i.e. after the network decomposes the input (analysis) into
its own internal representation, recomposes it (synthesis),
and calculates the difference between the two. This
difference is treated as error which drives the adaptation.
Perfect reconstruction leads to zero error and no
adaptation. Less-than-perfect reconstruction over all input
vectors is normal and the neuron’s synaptic weight vectors
usually never reach the point where reconstruction error is
zero, but they will converge to a vector that minimizes
reconstruction error over the entire data set. For a set of
input vectors with components whose variance is centered
around zero, this vector is the principal component vector.

The Oja learning rule only allows for the extraction of
the principal component vector. For a network that
extracts every eigenvector of the data, one should see [4].

III. METHODS
The block diagram of a two-dimensional adaptive
neuron with Oja learning is shown in Fig. 3. The
adaptation of the synaptic weights is implemented by a

master-slave architecture as the outstar vector adapts and
the instar weight vector follows.
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The multipliers were implemented by a fully-
differential variant of the Gilbert cell multiplier, shown in
Fig. 4. For more information on multipliers of this type
the reader is directed to [5]. Common-mode feedback was
added to lock the common-mode of the output to a fixed
reference voltage. The loop consists of a balanced
differential pair with common-mode sensor, and a single-
ended operational transconductance amplifier (OTA)
connected to the gate of the tail current transistor and a
capacitor. When the common-mode of the output lowers,
charge is taken out of the capacitor, lowering the potential
of the gate of m,; thus increasing the current flowing into
both output nodes raising the common-mode. The single-
ended OTA consisted of a simple differential pair with
current mirrors and high output resistance output stage.
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Fig. 4. Fully-differential Gilbert cell multiplier with commor-mode
feedback.

The integrators were realized by the fully-differential
OTA shown in Fig. 5. Source degeneration transistors (m,
and m,,) were used for linearizing the transfer function and
cascoded outputs were used for increasing the output
resistance. Capacitors shown at the positive and negative
output terminals were used to realize an OTA-C integrator.
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Fig. 5. Fully-differential OTA-C integrator for synaptic weight
adaptation.



Using the blocks shown in Fig. 4 and Fig. 5, the block
diagram of Fig. 3 was laid out and sent for fabrication in a
1.2 micron, double-metal, double-poly n-well AMI
process. The lay-out of the 40 pin tiny chip is shown in
Fig. 6.

Fig. 6. Fully-differential dual-synapse neuron with on-chip adaptation.

IV. SMULATION RESULTS

At the time of this writing, the chips had just been
received and testing just begun. Therefore, all results
presented here are from HSPICE simulation of extracted
blocks. A simuiation was conducted to demonstrate that
the weight vector converges to the principal component
vector of the input data. The results are shown in Fig. 7.
The learning rate was determined by the ditferential
voltage on a multiplier, acting as the intensity of the image
pixel whose x-y coordinates where presented at the two
inputs. This graph shows the time evolution of the synaptic
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Fig. 7. Transient HSPICE results showing the convergence of the
synaptic weights on the principal component vector.

weights given repeated presentation of the points (-.3,.3)
and (.3,-.3). These data had zero mean in both dimensions.
The weights converge to the direction of the most
significant eigenvector of (-1,1) which is shown more
clearly in Fig. 8. This simulation demonstrated how the
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system would react to a local neighborhood of two pixels
with equal intensity.
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Fig. 8. X-Y plot of transient HSPICE results showing the convergence of
the synaptic weights on the principal component vector of (-.3,.3) and
(.3,-3).
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