MA 113 Exam 1 Spring 2001

- 1. Answer the following using the graph below.
 - (a) What is f(0)?
 - (b) For what numbers x is f(x) = 0?
 - (c) What is the domain of f(x)?
 - (d) What is the range of f(x)?
 - (e) On what intervals is f(x) increasing?

- 2. Let f(x) = 1 3x and g(x) = 2x + 4. Find and completely simplify $(g \circ f)(x)$.
- 3. (10 pts) Use the table below to evaluate f(g(1)) and g(f(1))

x	1	2	3	4	5	6
f(x)	4	2	5	2	1	3
g(x)	3	6	2	3	2	1

- 4. Sketch the graph of a function f that satisfies all of the given conditions.
 - $\bullet \lim_{x \to 0^-} F(x) = -1$
 - $\bullet \lim_{x \to 0^+} F(x) = 2$
 - $\bullet \lim_{x \to 2^-} F(x) = 0$
 - $\bullet \lim_{x \to 2^+} F(x) = 1$
 - F(2) = 3

5. Use the graph below to evaluate f(g(0))

6. If f and g are continuous functions with f(2) = 1 and $\lim_{x\to 2} [f(x) - 2g(x)] = 9$, find g(2).

7. Evaluate the $\lim_{x\to 5} \frac{\frac{1}{x} - \frac{1}{5}}{x-5}$

8. Find the value of c that makes the function below continuous on $(-\infty, \infty)$:

$$f(x) = \begin{cases} 2x + c & \text{if } x \le 1\\ 2c - x & \text{if } x > 1 \end{cases}$$

9. The height of a rock in meters after t seconds is given by $H(t) = 100t - 10t^2$. What is the velocity after 3 seconds?

10. Use the definition to find the derivative of $f(x) = 3x - x^2$

- 11. Find the equation of the tangent line to the curve $y = x + x^3$ at the point (2, 10)
- 12. Use the rules to find the derivative of each of the following functions. Do NOT simplify.

•
$$y = 3x^4 + 5x^2 + \pi^3$$

•
$$g(t) = (t^3 + t^2 - t) \left(3t + 4 + \frac{1}{\sqrt{t}}\right)$$

$$\bullet \ f(x) = x^2 - \frac{3}{x^2}$$

•
$$y = \frac{x^2 + 1}{x^2 - 1}$$

- 13. Find the domain of the function $f(x) = \frac{(x-1)(x-2)}{(x+3)(x+5)}$
- 14. Let $F(x) = x^3 + x + 1$. Show that there exists a number c such that F(c) = 4. Give reasons.

- 15. Find the points on the curve $y = x^3 x^2 x + 1$ where the tangent line is horizontal.
- 16. At what points on the curve $y = x^3 3x$ is the tangent line parallel to the line 9x y = 10?
- 17. (Squeeze Theorem in reverse) Given $2x \le G(x) \le x^2 + 1$ for all x. For what value of a can you determine

$$\lim_{x \to a} G(x)$$