Regression Analysis
The manager of boiler drums wants to use regression analysis to predict the number of worker hours needed to erect the drums in future projects. Consequently, data for 36 randomly selected boilers were collected. In addition to worker hours (Y), the variables measured include boiler capacity, boiler design pressure, and drum type.
Number of Worker-Hours Needed to Erect Boiler Drums |
|
|
|
|
|
||||
|
|||||||||
Worker_Hours |
Boiler_Capacity |
Design_Pressure |
Boiler_Type |
Drum_Type |
|
||||
6,928 |
610,000 |
1,500 |
2 |
1 |
|
||||
3,211 |
610,000 |
1,500 |
2 |
2 |
|
||||
4,065 |
90,000 |
1,140 |
1 |
1 |
|
||||
1,515 |
150,000 |
250 |
1 |
2 |
|
||||
3,748 |
88,200 |
399 |
1 |
1 |
|
||||
5,651 |
441,000 |
410 |
1 |
1 |
|
||||
2,000 |
150,000 |
500 |
1 |
2 |
|
||||
4,206 |
441,000 |
410 |
1 |
2 |
|
||||
1,200 |
30,000 |
325 |
1 |
2 |
|
||||
1,965 |
65,000 |
750 |
1 |
2 |
|
||||
2,566 |
150,000 |
500 |
1 |
2 |
|
||||
6,454 |
627,000 |
1,525 |
2 |
1 |
|
||||
2,048 |
30,000 |
325 |
1 |
1 |
|
||||
2,635 |
90,000 |
1,140 |
1 |
2 |
|
||||
4,268 |
150,000 |
500 |
1 |
1 |
|
||||
2,974 |
120,000 |
375 |
1 |
2 |
|
||||
3,163 |
88,200 |
399 |
1 |
1 |
|
||||
4,006 |
441,000 |
410 |
1 |
2 |
|
||||
3,775 |
441,000 |
410 |
1 |
2 |
|
||||
2,680 |
125,000 |
750 |
1 |
1 |
|
||||
4,526 |
150,000 |
500 |
1 |
1 |
|
||||
3,120 |
441,000 |
410 |
1 |
2 |
|
||||
7,606 |
610,000 |
1,500 |
2 |
1 |
|
||||
2,972 |
88,200 |
399 |
1 |
1 |
|
||||
1,206 |
30,000 |
325 |
1 |
2 |
|
||||
6,387 |
441,000 |
410 |
1 |
1 |
|
||||
14,791 |
1,089,490 |
2,170 |
2 |
1 |
|
||||
3,590 |
65,000 |
750 |
1 |
1 |
|
||||
3,698 |
610,000 |
1,500 |
2 |
2 |
|
||||
4,023 |
150,000 |
325 |
1 |
1 |
|
||||
6,565 |
441,000 |
410 |
1 |
1 |
|
||||
10,825 |
1,073,877 |
2,170 |
2 |
1 |
|
||||
2,735 |
150,000 |
325 |
1 |
2 |
|
||||
3,137 |
120,000 |
375 |
1 |
1 |
|
||||
6,500 |
441,000 |
410 |
1 |
1 |
|
||||
3,728 |
627,000 |
1,525 |
2 |
2 |
|
||||
|
|
|
|||||||
|
Svatter plots of the dependent variable vs all the independent
variables |
|
|||||||
|
|
|
|||||||
|
|
|
|
||||||
|
|
|
|||||||
|
|
|
|||||||
|
|
|
|||||||
|
|
|
|||||||
|
|
|
|||||||
|
|
|
|||||||
|
|
|
|||||||
|
|
|
|||||||
|
|
|
|||||||
|
|
|
|||||||
|
|
|
|||||||
|
|
|
|||||||
|
|
|
|
|
|||||
|
|
|
|
||||||
|
|
|
|
||||||
|
|
|
|
||||||
|
|
|
|
||||||
|
|
|
|
||||||
The above graph shows that Boiler capacity which is the independent
variable explains about 68% of the dependent variable which is Worker Hours,
so it should be considered for Regression Analysis. |
|||||||||
|
|
|
|||||||
|
|
|
|
||||||
|
|
|
|||||||
|
|
|
|||||||
|
|||||||||
|
|||||||||
|
|||||||||
|
|||||||||
|
|||||||||
|
|||||||||
|
|||||||||
|
|||||||||
|
|||||||||
|
|||||||||
|
|||||||||
|
|||||||||
|
|||||||||
|
|||||||||
|
|||||||||
|
|||||||||
The above graph shows that the boiler type explains 33% of the
dependent variable which is Worker hours. |
|
||||||||
|
|
||||||||
|
|||||||||
|
|||||||||
|
|||||||||
|
|||||||||
|
|||||||||
|
|||||||||
|
|||||||||
|
|||||||||
|
|||||||||
|
|||||||||
|
|||||||||
|
|||||||||
|
|||||||||
|
|||||||||
|
|||||||||
|
|||||||||
|
|||||||||
|
|||||||||
|
|||||||||
The above graph shows that the Drum type which is an independent
variable explains 25% of the dependent variable. |
|
||||||||
|
|||||||||
|
|
||||||||
|
|||||||||
|
|||||||||
|
|||||||||
|
|||||||||
|
|||||||||
|
|||||||||
|
|||||||||
|
|||||||||
|
|||||||||
|
|||||||||
|
|||||||||
|
|||||||||
|
|||||||||
|
|||||||||
|
|||||||||
|
|||||||||
|
|||||||||
|
|||||||||
The above graph depicts that the dependent variable which is worker
hours is explained 43% by the independent variable Design Pressure. |
|||||||||
|
|||||||||
|
|||||||||
|
Correlation matrix helps us to see if any of the independent variables
are highly correlated and if they are showing redundancy. |
||||||||
|
|||||||||
|
|||||||||
|
Worker Hours |
Boiler Capacity |
Design Pressure |
Boiler Type |
Drum Type |
|
|||
Worker Hours |
1 |
|
|||||||
Boiler Capacity |
0.827356289 |
1 |
|
||||||
Design Pressure |
0.65893468 |
0.762166006 |
1 |
|
|||||
Boiler Type |
0.574528783 |
0.796895361 |
0.902270223 |
1 |
|
||||
Drum Type |
-0.505794595 |
-0.110707049 |
-0.138483068 |
-0.074701788 |
1 |
|
|||
|
|
|
|||||||
|
|||||||||
multicollinearity exists when 2 of the independent variables are Highly
correlated(Redundancy) |
|
||||||||
|
The above relationship shows that Boiler capacity, Design Pressure and
Drum Type are highly correlated with Worker Hours. |
||||||||
|
|||||||||
|
|||||||||
|
|||||||||
SUMMARY OUTPUT |
|
||||||||
|
|||||||||
Regression Statistics |
|
||||||||
Multiple R |
0.950241938 |
|
|||||||
R Square |
0.90295974 |
|
|||||||
Adjusted R Square |
0.890438416 |
|
|||||||
Standard Error |
894.6031853 |
|
|||||||
Observations |
36 |
|
|||||||
|
|||||||||
ANOVA |
|
||||||||
|
df |
SS |
MS |
F |
Significance F |
|
|||
Regression |
4 |
230854854.1 |
57713713.53 |
72.11375982 |
2.97665E-15 |
|
|||
Residual |
31 |
24809760.63 |
800314.8591 |
|
|||||
Total |
35 |
255664614.8 |
|
|
|
|
|||
|
|||||||||
|
Coefficients |
Standard Error |
t Stat |
P-value |
Lower 95% |
Upper 95% |
Lower 95.0% |
Upper 95.0% |
|
Intercept |
7291.783466 |
781.4787781 |
9.330750457 |
1.63182E-10 |
5697.946101 |
8885.62083 |
5697.946101 |
8885.62083 |
|
Boiler_Capacity |
0.008749011 |
0.000903468 |
9.683809218 |
6.8642E-11 |
0.006906375 |
0.010591647 |
0.006906375 |
0.010591647 |
|
Design_Pressure |
1.926477177 |
0.648906909 |
2.968803613 |
0.005722954 |
0.603022072 |
3.249932281 |
0.603022072 |
3.249932281 |
|
Boiler_Type |
-3444.254644 |
911.7282884 |
-3.777720498 |
0.000674819 |
-5303.737785 |
-1584.771503 |
-5303.737785 |
-1584.771503 |
|
Drum_Type |
-2093.353564 |
305.6336847 |
-6.849223985 |
1.1242E-07 |
-2716.697921 |
-1470.009206 |
-2716.697921 |
-1470.009206 |
|
|
|||||||||
Considering all the independent variables like Boiler capacity, drum
pressure ,boiler type and drum type we get the regression equation for the
model as |
|
||||||||
|
|||||||||
Worker Hours= 7291.7+0.008749Boiler Capacity+1.9264Design
Pressure-3444.2Boiler Type-2093.35Drum Type |
|