CONTENIDO

Prefacio
1. Mecánica
2. Propiedades de los Fluidos
3. Gases
4. Fenómenos Térmicos
5. Sonido y Luz
6. Varias
7. Apéndice
titulo



121. La fuerza de dilatación térmica.

¿Es posible impedir mecánicamente la dilatación térmica de una barra metálica o de la columna de mercurio?


Es sabido que la dilatación y contracción térmicas poseen fuerza considerable. El físico inglés J. Tyndall realizó un experimento, en el cual una barra de hierro, al contraerse debido al enfriamiento, rompió una varilla de hierro del grosor de un dedo. Por esta razón, muchos piensan que es imposible contrarrestar la fuerza de dilatación térmica de una barra o un líquido sometidos a calentamiento.
Este criterio es erróneo: a pesar de que son enormes las fuerzas moleculares que condicionan la dilatación térmica, se trata de magnitudes finitas. Por ello, es fácil calcular la fuerza que se ha de aplicar a una varilla de hierro de 1 cm2 de sección transversal para impedir que se alargue al calentarla de 0 a 20 °C. Sólo se necesita conocer el coeficiente de temperatura de dilatación lineal del material (el del hierro es igual a 0,000012 °C-1 ) y su resistencia al alargamiento mecánico caracterizada por el llamado módulo de elasticidad, o módulo de Young (el del hierro es de 20.000.000 N/cm2; quiere decir que al aplicar una fuerza de 10 N por centímetro cuadrado a una varilla de hierro, su longitud aumentará en dos millonésimas y disminuirá en la misma magnitud al comprimirla con la misma fuerza).
He aquí el cálculo correspondiente. Supongamos que hay que impedir que una varilla de hierro de 1 cm2 de sección transversal se alargue en

0,000012 * 20 = 0,00024

de su longitud. Para acortar la varilla en dos millonésimas se requiere un esfuerzo mecánico de 10 N. Por consiguiente, para acortarla en 0,00024 de su longitud, hará falta un esfuerzo de

0,00024 : (1 /2.000.000) = 480 N.

De modo que si aplicamos a cada uno de los extremos de semejante varilla un esfuerzo de 500 N aproximadamente, entonces, al calentarla de 0 a 20 °C, su longitud no aumentará. En este caso la fuerza de dilatación de la varilla también valdrá 500 N.
De la misma manera se calcula la presión que impide que la columna de mercurio del tubo del termómetro se alargue durante el calentamiento. Tomemos el mismo intervalo de temperatura, de 0 a 20 °C. El coeficiente de dilatación del mercurio es 0,00018; bajo la presión de 1 at su volumen disminuye en 0,000003 del inicial. En nuestro caso tenemos que impedir que el mercurio se dilate en

0,00018 * 20 = 0,0036.

Por lo tanto, para evitar la dilatación del líquido, habrá que aplicar una presión de

0,0036 : 0,000003 = 1200 at.

Este hecho comprueba que si el canal del termómetro se llena con nitrógeno comprimido hasta una presión de 50 ó 100 at (véase la respuesta 114), el grado de dilatación de la columna de mercurio no variará de manera notable.



Página Anterior Volver al Indice Página Siguiente