
Pipelines 
This chapter describes how to create, test, and start and stop pipelines. Pipelines are groups 
of stages. It also describes how effective dates determine which version of a configuration file 
the Pipeline Server uses to process sessions. 

See Also: 
� 

� 

For a conceptual description of pipelines, see “Important Concepts” in 
Getting Started. 

For information on resolving problems with pipelines, see 
Troubleshooting. 

Service Definition  
All sessions metered to the Pipeline server belong to a service. A service is a type of task that 
can be performed by a service element for a client. For example, rating a telephone call. A 
service definition is a configuration file that defines all the properties that comprise a service. 
These properties are processed by plug-ins. A service definition follows the MSIX protocol and 
standards for naming conventions and defining types. 

Metering errors, such as missing properties detected based on the service definition, are 
captured and reported. 

Creating the Service Definition 
This is Step 2 of the Platform Manager Web Service Creation Wizard. See the Platform 
Manager online help or the Platform Extensions Guide for details. 

If you are not using the Wizard, then you manually do the following: 

1. Create a service definition file (service_name.msixdef where service_name is the name of 
the service). See “MSIX Service Definition File” on page 23 for the layout of a service 
definition file. 

2. Create the AutoSDK file for the service definition. (A sample path is 
installation\test\autosdk\test_service_name.xml where installation is the directory 
containing the MetraTech software and service_name is the name of the service.) 

See Also For details, see Error Handling and Testing. 

MSIX Service Definition File 
The MSIX service definition file contains MSIX-specific definitions for the service. The tags 
conform to the MSIX protocol. 

Descriptions of the properties in the MSIX service definition follow: 

dn: Distinguished name. This is the actual property name. � 

� type: Data type. Valid values are int32, string, unistring, timestamp, float, double, 
boolean, enum hand decimal. 

MetraTech                   23



Pipelines Platform Programmer Guide 

length: Maximum length in characters (not to exceed 255) for the value of properties 
with a string data type. This property is reserved for future use. 

� 

� 

� 

required: Whether a value is required. Valid values are Y (a value is required—a NOT 
NULL column in the database table) or N (a value is not required—a NULL column in 
the database table). 

defaultvalue: The default values for the property in the database column. If a 
property is not required, and no value is metered in, the the default value will be used 
during processing. 

A sample MSIX service definition from the testservice.msixdef file follows: 

<defineservice> 
 <name>metratech.com/testservice</name> 
 <description>Simple test service.  Used for testing basic 
 functionality and SDK connectivity.</description> 
 
 <ptype> 
  <dn>description</dn> 
  <type>string</type> 
  <length>80</length> 
  <required>Y</required> 
  <defaultvalue></defaultvalue> 
  <description>Comment entered by the user. Used for 
  display only.</description> 
 </ptype> 
 <ptype> 
  <dn>time</dn> 
  <type>timestamp</type> 
  <length></length> 
  <required>Y</required> 
  <defaultvalue></defaultvalue> 
  <description>Any date/time value. Used for 
  display only.</description> 
 </ptype> 
 <ptype> 
  <dn>units</dn> 
  <type>float</type> 
  <length></length> 
  <required>Y</required> 
  <defaultvalue></defaultvalue> 
  <description>Arbitrary number of units that will be rated 
  for. The units are multiplied by a configurable rate to 
  calculate the amount.</description> 
 </ptype> 
 <ptype> 
  <dn>accountname</dn> 
  <type>string</type> 
  <length>20</length> 
  <required>Y</required> 
  <defaultvalue></defaultvalue> 
  <description>Account to which this transaction is 
  associated. Used for account resolution.</description> 
 </ptype> 
 <ptype> 
  <dn>DecProp1</dn> 
  <type>DECIMAL</type> 
  <length></length> 

24 MetraTech



Platform Programmer Guide Pipelines 

MetraTech                    25

  <required>N</required> 
  <defaultvalue>0.000000</defaultvalue> 
  <description>Test decimal property</description> 
 </ptype> 
 <ptype> 
  <dn>DecProp2</dn> 
  <type>DECIMAL</type> 
  <length></length> 
  <required>N</required> 
  <defaultvalue>0.000000</defaultvalue> 
  <description>Test decimal property</description> 
 </ptype> 
 <ptype> 
  <dn>DecProp3</dn> 
  <type>DECIMAL</type> 
  <length></length> 
  <required>N</required> 
  <defaultvalue></defaultvalue> 
  <description>Test decimal property</description> 
 </ptype> 
</defineservice> 

Product View Definition 
The product view definition specifies properties that can be displayed on the MetraTech 
Presentation Server and which properties created by the Pipeline server are stored. The data 
in the product view is the result of the processing that occurred while the stages were running. 
The product view definition follows the MSIX protocol and standards for naming conventions 
and defining types.  

Physical tables in the database are created using configuration files for product view 
definitions. Every property in the MSIX product view definition file maps to a column in the 
database table that gets created. Data in the table appears to the user as details of the 
interactive bill. 

The prefix t_pv in the following example indicates a table product view: 

t_pv_metratech_com_testservice_1000 
t_pv_metratech_com_testservice_1001 
t_pv_metratech_com_testservice_1002 

Location 
You create a product definition file (productview_name.msix where productview_name is the 
name of the product view) in the following area: 

installdir\Extensions\extension_name\config\productview\site_name\ 

where: 

� 

� 

� 

installdir is where you installed the MetraTech Platform software, 
extension_name is the name of the Platform Extension that uses the product view, and 
site_name is the name of the site where subscribers will log in to view their bills. 



Pipelines Platform Programmer Guide 

For example, one of the product view definition filea supplied with the audio conferencing 
platfrom extension has the following path (assuming you installed the MetraTech software in 
the default folder): 

C:\MetraTech\RMP\rmp\Extensions\audioconf\config\productview\metratech.com\ 
audioConfCall.msixdef 

The MSIX definition file contains MISIX-specific definitions for the product view. The tags 
conform to the MSIX protocol. 

Properties 
Descriptions of the properties in the MSIX product view definition file follow. Be aware that the 
product view definition cannot contain reserved fields (indicated by an underscore). For 
example, do not include _Amount or _AccountID. 

ptype: this tag is used to begin and end each property. It contains several useful 
attributes: exportable, filterable, and uservisable. 

� 

� 

� 

� 

� 

� 

� 

� 

� 

dn: Distinguished name. This is the actual property name. 

type: Data type. Valid values are int32, string, unistring, timestamp, float, double and 
decimal. 

length: Maximum length in bytes for the value of properties with a string data type. 
This determines the column width in the database. 

required: Whether a value is required. Valid values are Y (a value is required—a NOT 
NULL column in the database table) or N (a value is not required—a NULL column in 
the database table). This property is not currently supported. 

defaultvalue: The default values for the property in the database column. This 
property is not currently supported. 

Attributes 
Product views support the following optional attributes: 

exportable: in MetraTech Presentation Server (MPS), determine whether a property 
should be exported to a CSV (comma separated file) when the subscriber selects the 
Export to CSV feature from within MPS 

filterable: determines whether a property should be shown in the property list 
dropdown used on the filter screen in MPS. 

uservisible: determines whether the property should be visible (that is, returned from 
the database) when data is queried. Setting this to False essentially sets the previous 
two attributes to false, as well. 

All of these attributes are true by default; product view properties are user visible, exportable 
and filterable by default. If you want different behavior, you must explicitly set the attributes 
to False within the product view configuration file. 

Let’s take a look at a few examples of how to use these attributes. 

If you wish to have a property that is persisted in the database but should not be displayed to 
the subscriber, mark it as not uservisible. An example is any property that is used internally 

26 MetraTech



Platform Programmer Guide Pipelines 

MetraTech                    27

during processing, but has no relevance to the subscriber viewing their bill from within the 
MetraTech Presentation Server application. The property would look like the following: 

<ptype uservisible="false"> 
   <dn>InternalGeneralLedgerCode</dn> 
   <type>unistring</type> 
   <length>30</length> 
   <required>Y</required> 
   <defaultvalue></defaultvalue> 
</ptype> 

If you wish to have a property that is used in MPS for rendering the page but not exported or 
listed as a filter property, mark it as not exportable and not filterable. An example of this 
might be a URL that was metered to the system. When we display the item, we may create an 
HTML link using the information that is returned, but do not want the subscriber to filter on 
this data or possibly even to export it. The property would look like the following:  

<ptype exportable="false" filterable="false"> 
   <dn>ThirdParyItemDescriptionURL</dn> 
   <type>unistring</type> 
   <length>100</length> 
   <required>N</required> 
   <defaultvalue></defaultvalue> 
</ptype> 

Example 
A sample MSIX product view definition from the recurringcharge.msixdef file follows: 

<defineservice> 
 <name>metratech.com/recurringcharge</name> 
 <!-- <![CDATA[ ]]> --> 
 <description> 
  <![CDATA[ 
  RecurringCharge. Metered by the recurring charge usage 
  server adapter at the end of the billing period. The 
  recurring charge amount is determined in the pipeline 
  and can not be metered. 
  ]]> 
 </description> 
 
 <ptype> 
  <dn>_Intervalid</dn> 
  <type>int32</type> 
  <length></length> 
  <required>Y</required> 
  <defaultvalue></defaultvalue> 
  <description>The ID of the Usage Server 
  Interval</description> 
 </ptype> 
 
 <ptype> 
  <dn>intervalstartdate</dn> 
  <type>timestamp</type> 
  <length></length> 
  <required>Y</required> 
  <defaultvalue></defaultvalue> 



Pipelines Platform Programmer Guide 

  <description>The start date of the current 
  interval.</description> 
 </ptype> 
 
 <ptype> 
  <dn>intervalenddate</dn> 
  <type>timestamp</type> 
  <length></length> 
  <required>Y</required> 
  <defaultvalue></defaultvalue> 
  <description>The end date of the current interval 
  </description> 
 </ptype> 
 
</defineservice> 

Optional Properties 
Properties in service definitions and product view definitions can be made optional by putting a 
value of N in the <required> tag. Here is an example of an optional property: 

<ptype> 
 <dn>email</dn> 
 <type>string</type> 
 <length>100</length> 
 <required>N</required> 
 <defaultvalue></defaultvalue> 
</ptype> 

By setting the <required> tag to N, this property is no longer required in the session. This 
means that if this property is not metered, the session will not fail. 

An optional property can have a default value. A default value is a value assigned to the 
property if it was not metered in (in the case of a service definition) or found in the session (in 
the case of a product view definition). For example: 

<ptype> 
 <dn>email</dn> 
 <type>string</type> 
 <length>100</length> 
 <required>N</required> 
  <defaultvalue>jobs@metratech.com</defaultvalue> 
</ptype> 

If this property was part of a service definition and no value was metered in, then this 
property would be set in the current session with the value of jobs@metratech.com. If the 
<defaultvalue> tag had no value, then the property would simply not exist in the session. 

If this property was part of a product view definition and no value for it was found in the 
session, then this property would be written to the database as jobs@metratech.com. If the 
<defaultvalue> tag had no value, then the property would be written as a NULL in the 
database. One exception to this case is if the property was an enumerated type; then it would 
be written to the database as 0 to ensure proper localization later.  

Certain combinations of optional properties in service definitions and their respective product 
views can be very useful. For example, we can have a property that is optional or even absent 
in a service definition but required in the product view. This means that by the time the 

28 MetraTech



Platform Programmer Guide Pipelines 

MetraTech                    29

session arrives at the WriteProductView stage, the property must have been put in the 
session, either originally by metering, or by some plug-in setting the property in the session. 

You could even have two different sets of default values (one for the service definition and one 
for the product view) for an optional property. This provides a great deal of flexibility for 
solving many different design issues. 

Enumerated Types 
You can set up enumerated type definitions for your services. For an example, see 
“Enumerated Types and Localized Strings” on page 15. 

Using enumerated type definitions eliminates the requirement for storing strings in the 
database and lets you localize your service precisely and efficiently. 

The pipelines use these enumerated values to map metered enumerated values to the 
localized strings that the MetraTech Presentation Server displays. 

Using the Platform Manager application, you can perform the following enumerated type 
configuration tasks: 

� 

� 

� 

� 

� 

Add a new enumspace. An enumspace is an umbrella (typically your service domain 
name) which holds an enumtype or set of enumtypes. Within each enumspace, all 
enumtypes and their values must be unique; across enumspaces, however, enumtypes 
can be the same. A sample enumspace might be "myservice.com." 

Add a new enumtype. An enumtype is a user-defined type consisting of a set of named 
constants called enumerators. A sample enumtype might be "service level." 

Add a new enumerator. An enumerator is a constant that gets assigned a value which is 
metered to the pipeline. A sample enumerator might be "gold." 

Add a new localized string. A localized string is the language for your enumerator. 

Add a new value. The value is the description ID which gets metered through the 
pipeline. You can have multiple values per enumerator. This value can be an integer or a 
string. For details, see the Enumerator Name/Value Table on page 17. 

See The Platform Manager online help for details. 

Configuring the Enumerated Type Definition 
You should use Platform Manager to configure all enumerated types. However, if you want to 
view the underlying files, this section presents an example. 

Enumerated Type files reside in folder hierarchy for the Platform Extension they are associated 
with. For example, the audio conferencing extension has enumerated type files in the following 
folder: 

installdir\Extensions\audioconf\config\enumtype\metratech.com 

where installdir is the directory containing the MetraTech software. 



Pipelines Platform Programmer Guide 

Enumerated Type Configuration File Format 
Definitions of the tags in an enumerated type definition files follow: 

enum_spaces: Each service can have its own enum space, though normally groups of 
services will share a single enum space. 

� 

� 

� 

� 

� 

� 

� 

� 

enum_space: each enum space must have a name property. The name corresponds 
to a path and file name for the … 

description: contains a text description for the enum space. 

enums: this tag indicates that enumerated types follow 

enum: each enum tag must have a name property; this is the identifier for the 
enumerated type. 

description: contains a text description for the enumerated type. 

entries: contains a list of name/value pairs for the enumerators in the enumerated 
type. 

entry: contains a single value for the enumerator. The name property typically 
matches the <value> tag, as in the following example: 

<entry name="Monday"> 
  <value>Monday</value> 
</entry> 

Note We recommend that you not edit these files by hand; use the Platform Manager 
application to add and edit enumerated types. When you edit the files manually, 
it is far too easy to introduce an error and corrupt the XML file. 

See the Platform Manager online help for more information. 

Here is the organization for an enumerated type configuration file: 

<mt_config> 
  <enum_spaces> 
    <enum_space name="metratech.com/audioconfconnection"> 
      <description>Metratech namespace</description> 
 
      <enums> 
        <enum name="CalendarCode"> 
          <description>Calendar Settings</description> 
          <entries> 
            <!-- list of entry name/value pairs --> 
          </entries> 
        </enum> 
 
      <!-- next enumerated type: <enum name></enum name> --> 
 
      </enums> 
    </enum_space>     
  </enum_spaces> 
</mt_config> 

30  MetraTech Confidential 



Platform Programmer Guide Pipelines 

MetraTech Confidential  31 

Example 
Let’s take a look an an example of how enumerated types are defined. If you examine the 
Audio Conferencing extension in Platform Manager, you'll see that there are three 
enumspaces: 

"metratech.com/audioconfconnection" � 

� 

� 

� 

� 

� 

� 

� 

� 

� 

� 

� 

� 

"metratech.com/audioconfconnection" 
"metratech.com/audioconfPlayBack" 

And you'll see that the audioconfconnection enumspace has several EnumTypes: 

UserRole 
CallType 
Transport 
Mode 
CalendarCode 

If you examine one of these, say CalendarCode, you'll see the available enumerators:Holiday 

Monday � Saturday 
Tuesday � Sunday 
Wednesday � Weekend 
Thursday � Peak 
Friday � Off-Peak 

And then there are values and Localized strings that appear depending on which country 
you're viewing. You see the entry name field, then the value next to it in brackets. For 
example, this figure shows the German enumeration values: 

 

Figure 10 Enum Space Example 

If you choose a different language, you'll see a different value for each enumerator entry 
name. 




