

Introducción a la dinámica Segunda Ley de Newton

Objetivo

Determinación de la aceleración de un móvil (carrito) usando diversas técnicas experimentales con el dispositivo indicado esquemáticamente en la Figura 1. Estudio experimental de la segunda ley de Newton.

Figura 1: Dispositivo experimental. Un carrito (M_1) se mueve sobre una mesa nivelada tirado por otro (M_2) que cuelga de la mesa.

Actividad 1

Estudio preliminar

Usando el dispositivo de la Figura 1, elegir las masas M_1 y M_2 de modo tal que el movimiento sea más bien lento, para poder medir con un cronómetro el tiempo que le lleve a la masa M_2 bajar unos 70 cm (tiempos del orden del segundo o mayores). Determine la aceleración a del sistema a partir de la medición de tiempos con el cronómetro. ¿Con qué errores determina a?. Sugerencia: nivele el sistema de modo que el ángulo Θ entre el horizonte y el riel donde se mueve el carrito sea $\Theta = 0$.

- Sin cambiar el dispositivo, determine la aceleración usando dos fotointerruptores que midan el tiempo de paso de M₁ en dos lugares distintos de su trayectoria. ¿Con qué errores determina ahora la aceleración?. Distinga si el resultado aproxima mejor el valor de la aceleración media o instantánea del carrito M₁.
- En las mismas condiciones anteriores medir a, usando una "cebra" en el carrito M_1 . ¿Cuáles son los errores en la determinación de a esta vez?.
- Para el mismo dispositivo, medir *a* usando un fotointerruptor en la polea. ¿Qué radio corresponde usar? ¿Cómo se comparan los valores de *a* obtenidos por los distintos métodos utilizados?

Actividad 2

Estudio dinámico - Segunda Ley de Newton

Usando las leyes de la dinámica demuestre que, para el sistema de la Figura 1, suponiendo la masa de la polea y del hilo despreciables, la aceleración del sistema está dada por:

$$a = \frac{\left(M_2 \cdot g - f_r\right)}{\left(M_2 + M_1\right)} \tag{1}$$

 \triangleright donde f_r es la fuerza de roce entre las partes del sistema. Un análisis más detallado, incluyendo la masa no nula de la polea, da como resultado:

$$a = \frac{\left(M_2 - \frac{f_r}{g}\right)}{\left(M_2 + M_1 + \frac{1}{2}M_p\right)} \cdot g \tag{2}$$

Aquí M_p es la masa de la polea, que se supone que es un disco cilíndrico uniforme de radio R_p .

Estudie experimentalmente la aceleración del sistema de la Figura 1 para distintos valores de M_2 . Luego represente gráficamente:

$$(M_2 + M_1 + \frac{1}{2}M_p) \cdot a$$
 vs. M_2 (3)

- ➤ ¿Qué características tiene este gráfico? ¿Qué puede concluir de este gráfico respecto del valor de g (aceleración de la gravedad)?
- Cuál es el valor de la fuerza de roce para este sistema? ¿Qué puede decir a partir de sus datos respecto de la validez de la expresión (2) y de la Segunda Ley de Newton a partir de la cual fue deducida? ¿Qué cambiaría en este análisis si, además de variar M₂, se hubiese variado también M₁?

Bibliografía

- 1. *Trabajos prácticos de física*, J. Fernández y E. Galloni, Centro de Estudiantes de Ingeniería, UBA, Buenos Aires (1963).
- 2. Curso superior de física práctica, B. L. Worsnop y H. T. Flint, Eudeba, Buenos Aires (1964).