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ABSTRACT

Mobile devices can move while in operation, which means that their point of attachment to the network can change from time to time. The mobile IP solution allows mobile nodes to retain their addresses regardless of their point of attachment to the network. The mobile wireless environment provides several challenges to reliable communication including scarce bandwidth, interference between users, and hand-off latencies during transmission. A central problem in the design of wireless networks is how to use the limited resources most efficiently in such adverse environments. Almost every corporate organization deploys and tests their networks either in labs or on simulators before implementing them on real sites. Since the demand and popularity of mobile IP networks is increasing, validating the performance of mobile IP based networks is crucial. The real advantage to simulators is their ability to answer questions regarding behavior with some degree of precision.

In this research the author designed and tested mobile IP based wireless networks on the NS-2 simulator environment and in a lab setup to depict a real world situation. NS-2 mobile IP protocol is implementation according to RFC 2002 recommendations. By comparing the results from both setups, the extent of validity of the NS-2 simulator was determined. A mobile node roamed from home agent to foreign agent 1 and foreign agent 2. It was observed that the results were very much compatible with some minor exceptions. Data was collected in a set of 1, 5.5 and 11 Mbps bandwidths with varying network conditions. During the course of research, the author developed NS-2 trace file analysis software package and data automation and gathering software. 
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CHAPTER 1

Introduction

The Internet, a loosely organized international collaboration of autonomous, interconnected networks, supports host-to-host communication through voluntary adherence to open protocols and procedures defined by Internet Standards.  There are also many isolated interconnected networks, which are not connected to the global Internet but use the Internet Standards. Wireless technology, including wireless Local Area Networks (LANs), data transfer over cellular radio such as Global System for Mobile Communication (GSM), Third Generation Partnership Program (3GPP), etc, and mobile operations from aircraft and near-earth spacecraft, are becoming increasingly important.  Some market projections suggest that a mobile Internet, in parallel with or augmenting the wired Internet, may be comparable in size to the wired Internet as early as 2003. The wireless operators have not, however, chosen to use Internet Protocol version 4 (IPv4), Transmission Control Protocol (TCP), full Hyper Text Transfer Protocol/Hyper Text Markup Language (HTTP/HTML), and other applications for a variety of reasons. These relate to edge-device cost, bandwidth limitations, perceived protocol imperfections, unnecessary complexities, chattiness of application protocols, and network layer addressing issues. Unfortunately, this creates some serious issues at the demarcation of wired/wireless networks: end-to-end operation is sacrificed, security is compromised, and automated content modification, in some form, becomes necessary.

When the name mobile computing comes into mind, it means that people are able to access network resources seamlessly with the help of laptop computers, Personnel Digital Assistants (PDAs) or electronic books. The impact of mobile computing is widespread. From tourism to field research and from collaborative application to your garden, mobile computing is demonstrating its significance. The whole idea to adopt mobile computing is to transfer information without being worried about location and without interruption constraints. This idea leads to such methods and protocols that allow network connectivity across mobile host movement. To enable this mobility, the protocol must not require massive changes to devices involved in mobile computing. 

Since the protocol for the Internet is Transmission Control Protocol/Internet Protocol (TCP/IP), directly or indirectly most of the networks today are IP-based networks. Any changes to the design of the TCP/IP protocol stack must be compatible with the largely installed base of IPv4 networks/hosts. IP is a network layer "best effort" delivery protocol that supports TCP and UDP protocols. An IP address consists of a Network-ID and a Host-ID. By design, an IP address is tied to the home network address, hosts are assumed to be immobile and intermediate routers only look at the network address. If the host is moved from its home network and attached to a new network without changing its IP address, then it won't be able to communicate with other hosts on the network. Thus, IP routing breaks under mobility.

In 1996 Internet Engineering Task Force (IETF) proposed the Mobile IP protocol [1] to help alleviate these problems just discussed. Mobile IP allows a mobile host to move around without changing its permanent IP address. Each mobile host has a home agent on its home network. The mobile host establishes a care of address when it's away from its home network.

The correspondent node is a host that wants to send packets to the mobile host using the mobile host's permanent IP address. These packets are routed to the mobile host home network, where the home agent intercepts the packets and forwards them to the current care-of-address. In response, the mobile host sends packets directly to the correspondent node.

Traditional networks consist of wired links and stationary hosts. Transport protocols support two basic types of communication: connection-oriented and connectionless. To use a connection-oriented transport protocol, two applications must establish a connection, and then data travels across the connection. Transmission Control Protocol (TCP) provides a connection-oriented interface to applications. On the other hand, a connectionless interface allows an application to send a message to any destination without prior connection establishment. In the TCP/IP protocol suite, the User Datagram Protocol (UDP) provides connectionless transport. 

TCP and UDP are widely used in the wired networks. A study conducted by the Department of Computer Science at Columbia University shows that about 74.91% of Internet traffic is TCP based [17], so the study of TCP-based wireless network is of great importance. Mobile hosts and their wireless communication links are combined with wired networks to establish Internetworks. However, communication over wireless links is characterized by limited bandwidth, high latencies, sporadic and high bit-error rates, and temporary disconnection. Network protocols and applications must deal with these characteristics, which degrade the performance of TCP in mobile communication links. 

TCP performs very well on wired networks by adapting to end-to-end delays and packet losses. TCP provides reliability by maintaining a running average of estimated round-trip delay and mean deviation and by retransmitting any packet whose acknowledgement is not received within twice the deviation from the average. Due to the relative low error rates over wired networks, packet losses are assumed to be a result of congestion [2]. Nevertheless, in the presence of the high error rates in mobile communication links, this assumption causes TCP to suffer a significant degradation in performance in the form of poor throughput and very high interactive delays when used in a wireless environment. Miss-routed packets on the wireless links are incorrectly interpreted by TCP as congestion. This behavior arises due to harsh nature of wireless link from handoffs or errors during transmission. In response to this kind of "misunderstanding", TCP drops its transmission window size before retransmitting the packets, initiates the congestion control mechanisms such as slow start, and resets the retransmission timer using an exponential from the previous value, thereby unnecessarily reducing its bandwidth utilization.

It is difficult to stumble on a suitable simulator for wireless and mobile communication that also supports mobile IP. Studies of at least 3 different kinds of simulators namely OPNET [7], GloMoSIM and NS-2 showed that NS-2 fits well for this thesis work. NS-2 supports mobile IP protocol, and the notable point is that the mobile IP was tested on NS-2 first before being proposed as a standard in the IETF working group. Network Simulator version 2 (NS-2) is an event-driven network simulator. An extensible simulation engine is implemented in C++ and is configured and controlled via a Tcl (Tool Command Language) interface. A Tcl program defines a simulation. Once a network topology is defined and traffic sources and sinks are configured, the simulation is invoked and statistics are collected. A network topology is realized using three primitive building blocks: nodes, links, and agents. Nodes are passive objects that act as containers for agents, which are the objects that actively drive the simulation. Traffic sources and sinks are examples of agents. After a topology is defined, agents are attached to nodes. Agents are the objects that actually produce and consume packets. Each agent is automatically assigned a port number analogous to a TCP or UDP port that is unique across all agents on a given node. Links can be thought of as the physical transmission links, nodes as end hosts and routers, and agents as transport entities and/or processes that run on end host. 

 The goal of this thesis is to implement a test bed for the measurement of various parameters that might affect wireless network performance and to validate results obtained from the simulator environment to that of real networking environment. This validation is of great importance to correctly predict current and future uses of the Internet technology in wireless domain. This validation will also help to make recommendations on research and standardization tasks to improve acceptance of Internet network and transport layer protocols in wireless environments.

This document is organized into seven main chapters. Chapter 3 describes the mobile IP protocol. Chapter 4 projects light on NS-2 simulator and it technology. The test-bed used when collecting data on simulator setup and on actual network setup in lab, is examined in detail in Chapter 5 and Chapter 6 respectively, while Chapter 7 presents the conclusions. In Chapter 2, an overview of the literature on relevant topics will be presented. 

CHAPTER 2

LITERATURE REVIEW

Outline

This literature review is divided into three sections. The first part discusses the history of wireless networks. The second part reviews the various methods and standards of wireless networking techniques. This part also deals with the standards and background of the mobile IP implementation. The third part focuses on the need of a simulator environment for the enterprise networks to forecast about the network requirements and behavior.

2.1 History of Wireless Networks

Wireless networking is on the rise and adds a whole new level of convenience to networking. It has the ability to reduce the costs of setting up and maintaining a computer network. 

2.1.1 Radio Technology

The humble beginning of wireless services takes us back to the 19th century at a time when Guglielmo Marconi, "the father of radio" made his mark in the world of wireless technology. 

When Marconi started experimenting with radio waves (Hertzian Waves) in 1894, his objective was to produce and detect radio waves over long distances. In 1896, Marconi was successful. He obtained a patent and established the Wireless Telegraph and Signal Company Limited, the first radio factory in the world. In 1901, signals were received across the Atlantic and in 1905 the first wireless distress signal was sent using Morse Code. 

2.1.2 Military Use of Radio Technology

Wireless technology eventually progressed as an invaluable tool used by the U.S. Military. During World War II, the United States Army first used radio signals for data transmission. The military configured wireless signals to transmit data over a medium that had complex encryption, which made unauthorized access to network traffic almost impossible. This heavily encrypted radio data transmission technology was used quite extensively throughout the campaign with the US and its allies.

2.1.3 ALOHNET

Wireless proved so valuable as a secure communications medium that many businesses and schools thought it could expand their computing arena by enlarging their wired local area networks (LAN) using wireless LANs. This also inspired a group of researchers in 1971 at the University of Hawaii to create the first packet based radio communications network. ALOHNET [1], as it was named, was essentially the very first wireless local area network (WLAN). This first WLAN consisted of seven computers that communicated in a bi-directional star topology that spanned four of the Hawaiian Islands, with the central computer based on Oahu Island. With this, wireless networking was born. 

2.2 Wireless LAN Standardization Process 

In order for WLANs to be widely accepted, there needed to be an industry standard devised to ensure the compatibility and reliability among all manufacturers of the devices. The Institute of Electrical and Electronics Engineers (IEEE) has provided a standard called IEEE 802.11b. The original standard, IEEE 802.11, was defined as the standard in 1997 followed by IEEE 802.11a and IEEE 802.11b in September of 1999. 

The original standard operates at a radio frequency (RF) band that surrounds 2.4GHz, provides for data rates of 1Mbps and 2Mbps and has a set of fundamental signaling methods and services. The IEEE 802.11a and IEEE 802.11b standards are defined at bands of 5.8GHz and 2.4GHz, respectively. The two additions also define new Physical (PHY) layers for data rates of 5Mbps, 11Mbps, and 54Mbps with IEEE 802.11a. These standards operate in what is known as the Industrial, Scientific, and Medical (ISM) frequency bands. The typical bands are 902-928MHz (26MHz available bandwidth), 2.4-2.4835 GHz (83.5 MHz available), and 5.725-5.850 GHz (125MHz available), with the latter allowing for IEEE 802.11a's higher data rate. The standard defines the PHY and Media Access Control (MAC) layers for the wireless communication. 

The PHY layer, as defined by the standard, includes two different types of radio frequency (RF) communication modulation schemes: Direct Sequence Spread Spectrum (DSSS) and Frequency Hopping Spread Spectrum (FHSS). Both types were designed by the military for reliability, integrity, and security. They each have their own unique way of transmitting data. 

2.2.1 Frequency Hopping Spread Spectrum (FHSS)

FHSS works by splitting the available frequency band into several channels. It uses a narrow band carrier wave that continuously changes in a 2-4 level Gaussian Frequency Shift Keying (GFSK) sequence. In other words, the frequency of transmission changes in a pseudorandom manner that is known by the sending and receiving nodes. This technique adds a decent bit of security during radio propagation. A hacker would generally not know the varying frequency in order to receive the entire signal. One advantage to FHSS is that it allows for multiple networks to coexist in the same physical space.
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Figure 2.1 FHSS

2.2.2 Direct Sequence Spread Spectrum DSSS

DSSS works in a different manner altogether. DSSS combines the data stream with a higher speed digital code. Each data bit is mapped into a common pattern of bits known only to the transmitter and the intended receiver. This bit pattern is called a chipping code. 
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Figure 2.2 DSSS

This code is a random sequence of high and low signals that signify the actual bit. This chipping code is inverted to represent the opposite bit in the data sequence. This frequency modulation, if the transmission is properly synchronized, offers its own error correction, and thus has a higher tolerance for interference.

2.2.3 Mobile IP Standardization Process

The mobile IP Working Group of the Internet Engineering Task Force (IETF) is the result of efforts by many individuals interested in the problem of mobile routing of hosts. After an ongoing process of discussion during various meetings, In June 1992, a proposed charter for a formal Working Group was submitted to the IETF, and at the same time, a mailing list was set up for reporting progress of the group's tasks. Following a revision of the charter, the Working Group was officially formed on June 30, 1992. 

This group is addressing the requirement of mobility in the Internet. Mobile IP enables a mobile node to send and receive packets over the Internet using its home address regardless of its point of attachment. In essence, mobile IP extends the existing Internet Protocol to allow a portable computer to be moved from one network to another without changing its IP address and without losing existing connections. The mobile IP method supports transparency above the IP layer, including the maintenance of active TCP connections and UDP port bindings.

2.2.4  Interactions Between IETF and Other Standards

Many wireless technologies and organizations are adopting IETF standards to establish interoperability. For example, IEEE 802.11 WLAN adopted IETF standards for mobile IP, end-to-end security, and authentication, authorization and accounting (AAA) services. Third Generation Partnership Project (3GPP) considered IETF work on header compression [21]. IETF standardization is a comprehensive and slow process. Adopting IETF standards would help minimize vendor operability problems, however, the decision to rely on IETF standards has also introduced frustrations.

One common cause for frustration is the differences in standardization procedures.  For instance, 3GPP has a strict model of publishing recommendations yearly. If a matter is not finalized then it is dropped. IETF working groups have much less formalized schedules, and often seem to ignore published milestone dates. This has led to a common opinion within other standards organizations that the IETF cannot deliver on time.

IETF varies from other organizations is in the publication of a "system profile".  For example, defining interoperation of IP Security (IPSec), Quality of Service (QoS) for Voice over IP (VoIP) and video conferencing, and billing as a service are some of these differences. Wading through all the protocol specifications, deciding on optional features and piecing together the components to deliver a commercial quality service takes considerable expertise.

There was often confusion about how to get involved in IETF standards efforts, submit requirements, and get delivery commitments. Many people are unaware that it is very simple to join in IETF standardization via working group meetings and the mailing list [22].

It is useful to understand these concerns and frustrations. Because as the wireless technology is moving ahead and different vendors are coming across with their own set of wireless networking standards, it is clear that there can be some benefits in improving communication with other standards organizations and encouraging their participation in IETF activities.

2.2.5 New Trends and Techniques to Improve Wireless Networking

The IETF is heavily involved in an array of activities to improve wireless networking and as a result improve the TCP protocol. Recent work on transport improvement includes path Maximum Transfer Unit (MTU), Forward Error Correction (FEC), SACK, NewReno, Fast Recovery, ACK congestion control, segment byte counting, Explicit Congestion Notification (ECN), larger initial transmit windows, and sharing of related TCP connection state. Work on new transports includes Stream Control Transmission Protocol (SCTP) [18] in the IETF Signaling Transport (SIGTRAN) working group and TCP-Friendly Rate Control (TFRC) by researchers at ACIRI. SCTP provides a reliable UDP-like protocol supporting persistent associations and in-order delivery with congestion control.  TFRC is targeted at unreliable, unicast streaming media. Finally, work in the IETF End-point Congestion Management (ECM) working group is looking at standardizing congestion control algorithms [19], and the Performance Implications of Link Characteristics (PILC) working group is characterizing performance impacts of various link technologies and investigating performance improvements [20].

This vast array of ongoing research and standards development was overwhelming, and there was considerable disagreement on the performance and applicability of several TCP extensions.  However, some key points were discovered.  First, transport work within the Internet community is not stagnant. There is a   significant amount of interest and activity in improvement to existing protocols and exploration of new protocols.  Secondly, the work with researchers in satellite networking has demonstrated the tremendous success possible in close collaboration.  The satellite   networking community was dissatisfied with initial TCP performance on long delay links.  Through submission of requirements and collaborative investigation, a broad range of improvements have been proposed and standardized to address unique characteristics of this environment.  This should hopefully set a very positive precedent to encourage those in the wireless sector to pursue similar collaboration in adoption of Internet protocols to their environment.

2.3 Mobile IP Network: Critical Issues

Mobile IP describes how a mobile node can perform IP-layer handoffs between subnets served by different foreign agents. In certain cases, the latency involved in these handoffs can be above the threshold required for the support of delay-sensitive or real-time services [5]. Mobile IP was originally designed without any assumptions about the underlying link layers over which it would operate so that it could have the widest possible applicability. This approach has the advantage of facilitating a clean separation between Layer 2 and Layer 3 of the OSI protocol stack, but it has negative consequences for handoff latency. For instance, the strict separation between Layer 2 and Layer 3 results in the following built-in sources of delay:

· The mobile node (MN) may only communicate with a directly connected FA. This implies that a MN may only begin the registration process after a Layer 2 handoff to a new foreign agent (FA) has been completed.

· The registration process takes some time to complete as the registration requests propagate through the network. During this period of time, the MN is not able to send or receive IP packets.

The aim of this thesis is to observe the effect of latencies in mobile IP networks in a lab and in simulator environment. It is very important to predict and forecast the behavior of an enterprise network in advance so that the solution would be cost affective and the improvements can be done before actual deployment of the mobile IP based network.

2.3.1 Network Simulators

Simulation is a common technique used by researchers and provides many benefits [15]. Verification and validation of a simulator are essential if the results of those simulations are to be believed [14]. Unfortunately, limited validation of simulators has been performed in the mobile IP based wireless network community.  In general, simulators provide many benefits including the ability to:

· Test scenarios that are dangerous or have not yet occurred in the real world.

· Predict performance to aid technology design.

· Predict expected behavior of new protocols and designs without implementation costs or the disruption of existing systems.

· Quickly survey a range of potential variations.

· Improve validation of the behavior of existing protocols.

· Create an infrastructure for developing new protocols.

· Give the chance to study large-scale protocol interaction 

A simulator is only useful when it produces accurate results. Accuracy, however, is a subjective quality and typically only comes after the simulator has been validated by exhaustive testing and widespread use. Validation could be defined as the process to evaluate how accurately a model reflects the real world phenomenon that it purports to present. This is particularly important when the simulated experiments are not easily replicated for confirmation of simulated results (perhaps because of extensive deployment efforts required or proprietary log data). 

For the simulations, the LNBL Network Simulator, NS-2, developed by the Network Research Group at the Lawrence Berkeley National Laboratory, is used. NS is an extensible, easily configured and programmed event-driven simulation engine, with support for several flavors of TCP (include SACK, Tahoe and Reno) and router scheduling algorithms [13]. The NS simulation description language is an extension of the Tool Command Language, Tcl. A simulation is defined by a Tcl program. Using the ns command, a network topology is defined, traffic sources and sinks are configured, statistics are collected, and the simulation is invoked. By building upon a general-purpose language, arbitrary actions can be programmed into the configuration. 

Several other network simulators were also tested to simulate mobile IP based networks that include OPNET and GloMoSim. NS-2 [9] was selected because of its wide industry and research acceptance. The mobile IP protocol was tested on the NS-2 simulator before being approved by IETF.

This chapter introduced wireless networks, radio technology that drives those networks, existing wireless industry standards, and their evolution. It also discussed issues that are involved in designing, testing and validating the mobile IP based wireless networks in real and simulated environments. The next chapter focuses on the mobile IP protocol in detail.

chapter 3

Mobile Internet Protocol

The Internet Protocol, also knows simply as IP, is what makes the Internet work. Basically, IP breaks messages into individual packets for routing across the Internet. Each IP packet contains a destination IP address that uniquely identifies any terminal or server on the Internet. Each IP address is associated with a fixed network location, just as immobile telephone numbers are associated with a physical wall jack. When a packet’s destination is a mobile node, a new network IP address must be assigned whenever the mobile device changes location. This constant updating of network address makes transparent mobility impossible.

3.1 Mobile IP Overview

Mobile IP technology enables a device to connect to the Internet and retains its IP address while on the move. Proposed by a working group of the Internet Engineering Task Force (IETF), the mobile IP standard (RFC 2002) is designed to solve the IP mobility problem by enabling a mobile node to use two IP addresses: a static home address and a care-of-address that changes as a user moves about. 

The principle behind mobile IP is the same as that of a traveling executive with a home-office assistant. The assistant knows the whereabouts of the executive all the times. Incoming calls to the executive are fielded by the assistant who forwards them to the executive’s actual location.

Mobile IP includes several major components: the mobile node (the executive), home agent (the assistant), and foreign agent (the office with access to the executive). Communication from a correspondent to the mobile user is directed to the home address where the home agent handles it. The home agent receives all packets destined for the mobile user and forwards them to the care-of-address, the mobile node’s current point of attachment. When the executive wants to send information back to the correspondent, it communicates directly using conventional IP.

3.2 Mobile IP Functional Entities

The mobile IP architecture, as proposed by the IETF, defines special entities called the Home Agent (HA) and Foreign Agent (FA) that cooperate to allow a mobile node to move without changing its IP address. The term mobility agent is used to refer to access point acting either as a home agent or foreign agent. A network is described as having mobility support if it is equipped with a mobility agent.
Each mobile host is associated with a unique home network as indicated by its permanent IP address. Normal IP routing always delivers packets meant for the mobile node to this network. When a mobile node is away from home network, a specially designated router on this network, its home agent, is responsible for intercepting and forwarding its packets.

The mobile node uses a special registration protocol to keep its HA informed of its current location. Whenever an mobile node moves from its home network to a foreign network or from one foreign network to another, it chooses a foreign agent on the new network and uses new foreign agent to forward a registration message to its HA.

After a successful registration, packets arriving for the mobile node on its home network are encapsulated by its HA and sent to its FA. Encapsulation refers to the process of enclosing the original datagram as data inside another datagram with a new IP header. This is similar to the post office affixing a new address label over an older label when forwarding mail for a recipient who has moved. The source and destination address fields in the outer header correspond to the HA and FA, respectively. This encapsulation is also called tunneling, since intermediate routers remain oblivious of the original inner-IP header. In the absence of this encapsulation, intermediate routers will simply drop the packets. Upon receiving the encapsulated datagram, the FA strips off the outer header and delivers the newly exposed datagram to the appropriate visiting mobile node on its local network.

Host movements typically cause some datagrams to be lost while routing tables at the HA and FA re-adjust to reflect the move. However, by using retransmissions and acknowledgments, connections maintained by the transport layer protocol are able to survive these losses in the same way they survive losses due to congestion. When the mobile node is away from its home network, datagrams destined for it are always sent first to its home network, in many cases resulting in a non-optimal route.

3.2.1 Mobile Node On Home Network

Home agent periodically advertises agent advertisement messages. A mobile node receives these agent advertisements and determines whether it is on its home network or a foreign network. When the mobile node is on its home subnet, specified by its IP address, the mobile node informs the home agent of its presence. From there, IP addressing and datagram delivery work as they would without mobile IP. The situation changes when the mobile node connects to a foreign network.

3.2.2 Mobile Node on Foreign Network

On a foreign network the mobile node obtains a "care of address," which is the foreign agent's IP address. The mobile node registers with its home agent and gives the home agent its care of address. Alternatively, if DHCP is available on the foreign network, the mobile node can obtain a temporary address, register this with the home agent and act as its own foreign agent.

3.2.3 Care-Of-Address

When a mobile node enters a network, it first determines whether it is its home network or a foreign network. This is done by listening for a local broadcast message from a home agent or foreign agent. Alternatively, it can solicit an agent advertisement message. These initial and subsequent registration messages are based on extensions to Internet Control Message Protocol (ICMP) Router Discovery specified by RFC 1256. 

3.2.4 Triangular Routing

Once the mobile node has registered with the home agent, IP traffic addressed to the mobile node is received by the home agent, encapsulated in another IP datagram and then "tunneled" to the foreign agent. The foreign agent forwards the datagrams to the mobile node. When data is sent to the correspondent node from the mobile node, it is sent to the foreign agent first and the foreign agent then sends it back to home agent and it is delivered to the correspondent node.

In the reverse direction, the mobile node can bypass the home agent and send datagrams directly to their destination. This results in triangular routing of traffic, which is not necessarily efficient but is effective. In addition, when a mobile node changes its location, it can register with a new foreign agent, though traffic directed by the home agent to the old foreign agent would be lost until the new mobile node has registered its location.

3.3 Mobile IP Components

There are at least three major mobile IP components:

· Agent Discovery: the process by which a mobile node determines its current location and obtains a care-of address.

· Registration: the process by which a mobile node requests service from a foreign agent on a foreign link and informs its home agent of its current care-of address.

· Tunneling: the process of encapsulating data packets on home network and sending them to the foreign network where the data packets are decapsulated and forwarded to the mobile node visiting the foreign network.

3.3.1 Agent Discovery

Agent discovery consists of two simple messages. Agent Advertisements, are used by agents (home and foreign) to announce their capabilities to mobile nodes. Specifically, agent advertisements are periodically transmitted as multicast or broadcast to each link on which a node is configured to perform as a home agent, foreign agent or both. This allows a mobile node that is connected to such a link to determine whether any agents are present. If an agent is found, their respective identities (IP addresses) and capabilities are communicated.

Messages of the second type, agent solicitations, are sent by mobile nodes that do not have the patience to wait for the next periodic transmission of an agent advertisement. The sole purpose of an agent solicitation is to force any agent on the link to immediately transmit an agent advertisement. This is useful in those situations where the interval at which agents are transmitting is too low for a mobile node that is moving rapidly from link to link.

3.3.2 Registration

A mobile node registers whenever it detects that its point of attachment to the network has changed from one link to another. Also, because registrations are valid only for a specified amount of time, a mobile node re-registers when its existing registration is due to expire. Mobile IP registration is the process by which a mobile node:

· Requests routing services from foreign agent on a foreign link.

· Informs its home agent of its current care-of address.

· Renews a registration which is due to expire.

· Deregisters when it returns to its home link.

The mobile node is configured with the IP address and mobility security association (which includes the shared key) of its home agent. In addition, the mobile node is configured with either its home IP address or another user identifier, such as a Network Access Identifier.
The mobile node uses the home IP address and mobility security association (which includes the shared key) of its home agent and the information that it learns from the foreign agent advertisements to form a mobile IP registration request. It adds the registration request to its pending list and sends the registration request to its home agent through the foreign agent. The foreign agent checks the validity of the registration request, which includes checking that the requested lifetime does not exceed its limitations, the requested tunnel encapsulation is available, and that reverse tunnel is supported. If the registration request is valid, the foreign agent adds the visiting mobile node to its pending list before relaying the request to the home agent. If the registration request is not valid, the foreign agent sends a registration reply with the appropriate error code to the mobile node. 

The home agent checks the validity of the registration request, which includes authentication of the mobile node. If the registration request is valid, the home agent creates a mobility binding (an association of the mobile node with its care-of address), a tunnel to the care-of address, and a routing entry for forwarding packets to the home address through the tunnel. The home agent then sends a registration reply to the mobile node through the foreign agent. If the registration request is not valid, the home agent rejects the request by sending a registration reply with an appropriate error code.

The foreign agent checks the validity of the registration reply, including ensuring that an associated registration request exists in its pending list. If the registration reply is valid, the foreign agent adds the mobile node to its visitor list, establishes a tunnel to the home agent, and creates a routing entry for forwarding packets to the home address. It then relays the registration reply to the mobile node.

Finally, the mobile node checks the validity of the registration reply, which includes ensuring an associated request is in its pending list as well as proper authentication of the home agent. If the registration reply is not valid, the mobile node discards the reply. If a registration reply is sent to the mobile node indicating that registration is accepted, it means that the mobility agents are aware of mobile node presence. 

The mobile node re-registers before its registration lifetime expires. The home agent and foreign agent update their mobility binding and visitor entry respectively during re-registration. If the registration is denied, the mobile node makes the necessary adjustments and attempts to register again. For example, if there is a time mismatch then registration is denied and the home agent sends back its time stamp for synchronization, the mobile node adjusts the time stamp in future registration requests. Thus, a successful mobile IP registration sets up the routing mechanism for transporting packets to and from the mobile node as it roams.

3.4 Tunneling

Tunneling plays an important role in mobile IP. Fragmented IP packets affect which type of encapsulation methods can be used by a tunnel entry‑point. There are three types of tunneling used by mobile IP: IP in IP Encapsulation, Minimal Encapsulation, and Generic Routing Encapsulation (GRE). Encapsulation is suggested as a means to alter the normal IP routing for datagrams, by delivering them to an intermediate destination that would otherwise not be selected based on the (network part of the) IP Destination Address field in the original IP header. Once the encapsulated datagram arrives at this intermediate destination node, it is decapsulated, yielding the original IP datagram, which is then delivered to the destination indicated by the original Destination Address field.  This use of encapsulation and decapsulation of a datagram is frequently referred to as "tunneling" the datagram, and the encapsulator and decapsulator are then considered to be the “endpoints” of the tunnel.

3.4.1 What Is IP Fragmentation?

Many link layers and the hardware over which they run place an upper limit on the size of a frame that they are capable of transferring. This limit, called the link MTU (Maximum Transfer Unit), in turn limits the maximum size of an IP packet that may be transferred within a single frame. An IP packet which is larger than the link MTU of the link over which it is to be forwarded must be fragmented before it may be transmitted. Fragmentation is the process by which a large IP packet is chopped up into smaller pieces or fragments in order for the smaller pieces to fit within a link's MTU.

Fragmentation can occur when two hosts, each of which is directly con​nected to a link with large MTU, communicate via routers which themselves are connected via links with small MTU. To prevent fragmentation in such cases the host must discover the path MTU between the source and destination and agree upon an MTU size.

A node with an IP packet to transmit compares the size of the packet with the MTU of the link over which the node’s routing table specifies the packet should be transmitted. If the packet is too large to fit within the link MTU, as determined by the IP Total Length Field, then the packet is fragmented by router. When fragments arrive at the destination they are reassembled.

3.4.2 IP in IP encapsulation

IP in IP encapsulation, as defined in RFC 2003 [3], is the Internet-standard method for encapsulating an entire IPv4 packet within the payload portion of another IPv4 packet. Mobile IP home and foreign agents are required to implement IP in IP encapsulation in order to perform the home agent to care-of address tunnel. IP in IP encapsulations is used in this research. This is the common encapsulation type that is supported by routers in the lab and by NS-2 simulator.

3.4.3 Building an Encapsulated Packet
IP in IP Encapsulation is rather straightforward. A first IP packet is placed within the payload portion of a new IP packet, and the fields of the encapsulating (outer) IP header are set as follows:

· Version is set to 4.

· Type of Service (TOS) bits are copied from the inner IP header.

· Source Address and Destination Address are set to the entry‑point and the exit‑point of the tunnel, respectively.

· Internet Header Length (IHL), the Total Length, and the checksum are recom​puted for the outer header.

· Identification, Flags, Fragment Offset are set as specified by [RFC 791] for any IP packet. Specifically, a unique value is placed within the Identification field, and the Flags and Fragment Offset are set in accordance with whether or not the resulting, encapsulated packet needs to be fragmented. The Don't Fragment bit of the outer header is always set to 1 if the inner IP header has the Don't Fragment bit set to 1, which allows Path MTU Discovery to work roperly in the presence of IP tunnels.

· The Protocol field is set to 4 to indicate that the payload is itself an IP packet by the sender (header plus payload).

· The Time to Live field is set to a value large enough to deliver the encapsulat​ing packet to the tunnel exit‑point.

The Time to Live field of the encapsulated (inner) IP header is decremented by the tunnel entry‑point if the packet is being forwarded, for example, from some physical interface into the tunnel. Similarly, upon being decapsulated, the Time to Live field of the encapsulated (inner) IP header is decremented by the tunnel exit‑point if the packet is being forwarded, for example, from the tunnel to a physical interface.

Thus, tunnels implemented using IP in IP Encapsulation appear as a single, virtual link to packets that pass through them. For example, a packet arrives at a first router, passes through a tunnel that begins at that first router, emerges from the tunnel at a second router, and is further forwarded toward its ultimate destination. During this process, packet’s IP Time to Live field is decremented twice, exactly as if the tunnel were a single link. 
3.4.4 Relaying ICMP Messages

The Internet Control Message Protocol (ICMP) [RFC 792] defines a set of messages that provide diagnostic information and report error conditions. ICMP messages generated by a host or router in response to an IP packet are sent to the original source of that packet and generally provide useful informa​tion to that source. However, ICMP messages generated in response to a tunneled packet are sent to the entry-point of the tunnel, not necessarily to the original source of the encapsulated (inner) packet. In many circumstances, however, it is useful to inform the original source of the inner packet when an ICMP message is generated within a tunnel. Thus, [RFC 2003] defines the behavior of a tunnel entry-point necessary to relay certain ICMP messages to this original source.

3.4.5 Preventing Recursive Encapsulation

Recursive encapsulation is defined as the process by which a routing loop causes tunneled packets to reenter the same tunnel (an additional time) before exiting. In such a case, each encapsulation adds another IP header, with its own TTL, causing the packet to grow in size and circulate through the network indefinitely. 

GRE and IPv6 tunneling both have explicit mechanisms for preventing recursive encapsulation. IP in IP tunneling, as defined in RFC 2003, has no such mechanism. IPv4 tunnel entry points use the following mechanism to determine whether a packet is likely to be undergoing recursive encapsulation.

· If the tunnel entry-point is itself the IP source address of the original packet, then the tunnel entry-point should assume the presence of recursive encapsulation.

· If the IP source address of the original packet is the same as the tunnel exit-point, as determined from the entry-point’s routing table, then the tunnel entry-point should assume the presence of recursive encapsulation. 

3.4.6 Generic Routing Encapsulation (GRE)

GRE's [RFC 1701] support for multiprotocol tunneling and its explicit prevention of recursive encapsulation makes it attractive for certain applications. Mobile IP framework shows one such application in which GRE is used by mobile IP to enable mobile nodes to receive packets of multiple protocol suites in addition to IP when those mobile nodes are connected to a foreign link.
3.4.7 Minimal Encapsulation

A minimal forwarding header is defined for datagrams which are not fragmented prior to encapsulation.  Minimal encapsulation [4] is not used when an original datagram is already fragmented, since there is no room in the minimal forwarding header to store fragmentation information. To encapsulate an IP datagram using minimal encapsulation, the minimal forwarding header is inserted into the datagram.

NS-2 simulator and routers both have support for IP in IP encapsulation.

3.5 TCP Performance and Mobility

The transmission Control Protocol (TCP) [RFC 793] is the reliable, transport-layer protocol in the Internet. It is characterized by the following attributes:

· TCP provides a reliable service to the applications, meaning that TCP guarantees that the application’s data is delivered to the ultimate destination sequentially and error-free.

· TCP provides full duplex, stream-oriented communications, meaning that TCP guarantees that the application can flow simultaneously in both directions between two communicating nodes.

· TCP is connection-oriented since it has three distinct phases: connection establishments, data transfer and connection close.

A transport-layer protocol generally accepts data from the application layer, divides it up into optimally sized chunks, attaches a transport-layer header to those chunks to form segments and transmits each segment as the payload portion of the network-layer packet. In the specific case of TCP, the transport-layer header is a TCP header and the TCP segment is transmitted in the payload of an IP packet. TCP has many attributes which work together to provide a reliable service to the application layer.

3.5.1 TCP Attributes

TCP detects errors in transmission using checksum. The sender computes a checksum over contents of the TCP segment and a portion of the IP header, places it in the TCP checksum field, and transmits the packet to the receiver. At the receiver, the checksum is computed and compared with that in the checksum field. If they are not identical then an error has occurred in transmission and the packet is discarded by the receiver.

TCP corrects errors through acknowledgements and retransmissions. An acknowledgement is a message that informs a sender that its data has been received correctly byt the intended recipient. If the sender does not receive an acknowledgement in a “reasonable amount of time” then it assumes that the data has been lost and therefore the data should be retransmitted.

TCP performs an algorithm by which it estimates the round trip time. Round trip time is the time a packet is supposed to take to go from the source to the destination and for the acknowledgement to make its back to the original source. TCP also checks how much round trip time varies. TCP uses the round trip time estimate and variance to make an educated guess as to how long to wait before concluding that a packet has been lost.

Because TCP is full duplex, a first node can acknowledge previously received data at the same time, and within the same packet, that it sends its own data to second node. Because of the layout of the TCP header, piggybacking an acknowledgement in this way requires zero bytes over-and-above the data being sent to that second node. In contrast, a second acknowledgement has a minimum length of 40 bytes, 20 for the TCP header and 20 for the IP header. For this reason, a receiving node might delay the transmission of an acknowledgement, waiting for opportunities to piggyback the acknowledgement atop a packet containing user data. 

If a TCP node simply transmitted a segment and waited for an acknowledgement before sending any further segments, then it would spend a great deal of time waiting for acknowledgements. Instead, TCP allows a node to send many segments before requiring it to wait for some of them to be acknowledged. The maximum number of segments that a node is allowed to send before it must stop and wait for an acknowledgement is defined as a window. As a node receive acknowledgements for the segments it has already transmitted, it can “slide” its windows forward and in some cases increase the size of the window. The node is permitted to send more segments when its window slides forwards or increases in this way.

A sliding window provides a mechanism for preventing a fast sender from overwhelming a slow receiver with more data than it can handle, a process called flow control. Specifically, the fast sender must wait for the slow receiver to send acknowledgements before it may send any additional segments. A first node sets the Window field within the TCP header to inform a second node how many additional segments the first node is currently willing and able to accept.

3.5.2 Congestion Control

Congestion is a condition where the routers of a network are overloaded with packets and are unable to forward them because of the speed of their connected links or otherwise. In a congested network, some packets are dropped and others experiences high delays, while the amount of actual data transferred decrease considerably. TCP is designed to detect congestion and to help alleviate the condition by slowing down the rate at which it transmits (or retransmits) segments.

With respect to congestion, TCP makes a fundamental assumption about the Internet. Specifically, TCP assumes that almost all of the packet loss in the Internet is due to congestion and not due to hardware, transmission, or other errors in the transmitting and receiving those packets [6]. Thus when TCP detects a lost segment (e.g., it fails to get an acknowledgement in a reasonable amount of time), it dramatically reduces the number of segments it transmits and waits a longer time before re-transmitting segments that have not yet been acknowledged.

3.5.3 Slow Start

When TCP detects that the congestion condition is beginning to alleviate, it begins increasing the number of segments it transmits and adjusts the time for acknowledgements. If this increase were to occur too quickly, considering all the hosts on the Internet in aggregate, then a congestion condition might quickly return. For this reason, TCP increases this rate slowly both after a congestion condition has occurred and at the beginning of a new connection, wherein the host has no idea whether the Internet is capable of delivering that many segments.

3.5.4 Fast Retransmit

A TCP acknowledgement tells a first node how many bytes, since the start of the connection, have been received correctly and sequentially by a second node. In addition TCP sends an acknowledgement only upon the receipt of a segment [12]. Fast retransmit algorithm uses the arrival of three duplicates acknowledgements as an indication that a segment has been lost. For example, if the destination node receives segments 1 through 9 without error, then on the receipt of 9th segment it would acknowledge receipt of all of those segments. If the 10th segments is lost but the 11th, 12th and 13th segments arrive error-free, the destination node will still acknowledge the receipt of the 1st through 9th segments three times. The source node receives three identical acknowledgements and concludes that 10th segment was lost and that this lost is not due to network congestion, otherwise the remaining three segments would not have made it through the network so easily. Therefore the source node retransmits the 10th segment immediately, without waiting the “reasonable amount of time” it would ordinarily wait. This immediate retransmission, as described, is called fast retransmit.

This chapter discussed mobile IP protocol, tunneling and TCP algorithms that it uses to have a reliable communication. Tunneling place extra overhead during transmission of data. TCP performance also contributes to increase or decrease network latencies in mobile IP based networks. In the next chapter a comprehensive discussion about NS-2 simulator is presented.

CHAPTER 4

NS-2 Simulator

This chapter discusses the NS-2 simulator. It starts off with a brief introduction of the simulator and its event driven model and then discusses its programming architecture.

4.1 NS-2 Simulator Basics

The NS-2 is an object oriented, discrete event simulator for networking research. NS-2 gives substantial support for simulation of TCP, routing, and multicast protocols over wired and wireless (local and satellite) networks [8]. NS began as a variant of the REAL network simulator in 1989 and has evolved substantially over the past few years. In 1995, NS development was supported by DARPA (Defense Advanced Research Projects Agency) through the VINT (Virtual Inter Network Testbed) project at LBL, Xerox PARC, UCB (University of California, Berkeley), and USC/ISI (University of Southern California/Information Science Institute). Currently, NS development is supported through DARPA with SAMAN (Simulation Augmented by Measurement and Analysis for Networks) and through NSF with CONSER (Collaborative Simulation for Education and Research), both in collaboration with other researchers including ACIRI (AT&T Center for Internet Research at ICSI) [11]. NS has always included substantial contributions from other researchers, including wireless code from the UCB (University of California, Berkeley) and CMU (Carnegie Mellon University) Monarch (Mobile Networking Architecture) projects and Sun Microsystems.

4.2 NS-2 Programming Model

NS-2 is written in C++ and OTcl (Tcl script language with Object-oriented extensions) [16]. 
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Figure 4.1 Simplified User's View of NS

As shown in Figure 4.1, NS is an Object-oriented Tcl (OTcl) script interpreter that has a simulation event scheduler, network component object libraries, and network setup (plumbing) module libraries. The plumbing modules are implemented as member functions of the base simulator object. Network scenarios are programmed in OTcl script language. An OTcl script initiates an event scheduler, sets up the network topology using the network objects and the plumbing functions in the library, and tells traffic sources when to start and stop transmitting packets through the event scheduler. 

For efficiency reason, NS separates the data path implementation from control path implementations. In order to reduce packet and event processing time (not simulation time), the event scheduler and the basic network component objects in the data path are written and compiled using C++. These compiled objects are made available to the OTcl interpreter through an OTcl linkage that creates a matching OTcl object for each of the C++ objects. It also makes the control functions and the configurable variables specified by the C++ object act as member functions and member variables of the corresponding OTcl object. In this way, the controls of the C++ objects are given to OTcl. It is also possible to add member functions and variables to a C++ linked OTcl object. The objects in C++ that do not need to be controlled in a simulation or internally used by another object do not need to be linked to OTcl. Likewise, an object (not in the data path) can be entirely implemented in OTcl. Figure 4.2 shows an object hierarchy example in C++ and OTcl. 
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Figure 4.2 C++ and Otcl

In Figure 4.2, for every C++ objects there is a matching OTcl object hierarchy very similar to that of C++.
4.3 Architectural View of NS-2

Figure 4.3 shows the general architecture of NS. In this figure, a general user (not an NS developer) can be thought of as standing at the left bottom corner, designing and running simulations in Tcl using the simulator objects in the OTcl library. The event schedulers and most of the network components are implemented in C++ and are available to OTcl through an OTcl linkage that is implemented using TclCL. The whole thing together makes NS, which is an OO (Object Oriented) extended Tcl interpreter with network simulator libraries.
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Figure 4.3 Architectural View of NS-2

Next two chapters discusses the test-bed used when collecting data on simulator setup and on actual network setup in lab respectively.

CHAPTER 5

NS-2 test setup

This chapter elaborates on the setup and results gathered using the NS-2 simulator. Chapter 6 will discuss the test setup deployed in the LAB using wireless and internetworking components.
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Figure 5.1 Test Setup

In order to validate the performance of a mobile IP based network, the network diagram for the test bed shown in Figure 5.1 was used for NS-2 simulator. A similar test bed was also used in the LAB environment with the Cisco 36xx and 26xx series routers and using Cisco Aironet 340 series of Access Points and Bridges. LAB test setup will be discussed in more detail in Chapter 6.

The test bed for NS-2 was created using the Tcl (Tool Command Language) program. The Tcl program files were written using the commands available for mobile IP in NS-2 simulator. One home agent and two foreign agents were created using the NS-2’s node creation programming model, and then these nodes were programmed to act as mobility agents. One mobile node was introduced into the setup that roamed around and traveled from a home network to a foreign network (FA1) cell and continued its journey from this foreign network (FA1) to another foreign network (FA2) territory. 

During the phase of this movement, the mobile node maintained its connection with the corresponding mobility agents via wireless links that are made possible by using data link layer protocol 802.11b.

In order to simulate real traffic congestion on the links, FTP (File Transfer Protocol) data traffic was used. One node acting as an FTP server was statically attached to the IP cloud, while the mobile node (MN) acted as an FTP client requesting data from the FTP server during its movement. This FTP traffic congested the link and lead to the mobility agents dropping some of the packets. This traffic was generated using NS-2 traffic generation programming model. FTP was used since it is TCP based protocol, and a vast percentage of Internet traffic consists of TCP traffic. This helped simulate congestion patterns, which one usually encounters in the corporate network, and this in turn helped to validate the results.

5.2 Trace File Analysis Package

NS-2, upon running a Tcl scenario program file, generated a trace file. This trace file contained the detailed information about the scenario that had been executed. It was a large (around 10-20MB), non-uniform text file. The information about the packets arrival time, transmission time, number of packets dropped, type of packets, source, destination and timestamp was contained within the trace file along with the unwanted information as well. A sample trace file is also attached in appendix A. 

5.2.1 Programming Infrastructure

 The analysis of the trace file lead the author to develop and write a software package that is included in appendix B. Package was developed to collect information that was packed into the trace file in non-uniform and non-linear order. Software was also written to automate the data collection. These programs were written using expect, tcsh, bash, awk, and C++ programming languages. 

Scenario Tcl programs were written to test and check the mobile IP based wireless network under varying conditions. This included using multiple bandwidths, floating link delays and different interface queue lengths. Each scenario generated a large trace file that was processed by using the NS trace file analysis software package, written by the author. This software package was written specifically for this thesis.

5.3 Tests

Different test were carried out under varying network conditions. The results are shown in Table 5.1, 5.2 and 5.3. Tables are grouped on the basis of wireless link capacity. IEEE 802.11 supports 1MB, 5.5 MB and 11MB bandwidths standard. The tests were performed by varying link delay (that is in milliseconds) and interface queue length. Values of 2,5 and 10 ms were chosen to visualize a situation where link was congested and packets were delayed. Queue length played an important role in measuring network performance. An optimal value of queue should be chosen. A very large or very small queue may decrease the overall network performance. Different values of queue were chosen to simulate a live network where different queue lengths were implemented.  Complete average delay is the average delay when a mobile node moves its home agent to the last foreign agent FA2. To simulate this scenario, a node is moved from HA to FA2 while the TCP traffic is continuously flowing from source to destination. To have a better idea about the intermittent problems that may arise in a live wireless mobile IP based network, intermediate average network latencies were also calculated when the mobile node is moving from HA to FA1 and then from FA1 to FA2. These results are shown in the tables as average delay HA-FA1 and average delay FA1-FA2 respectively. All values presented are in milliseconds. 

During the process of communication and data transfer, a mobile node crossed two foreign agents. This crossing caused a tunnel to be established between FA1 and HA and then FA2 and HA. The overhead in establishing a tunnel is also measured in milliseconds. 

5.4 Results

	BW
	Link Delay
	Queue Length
	Complete Avg.
Delay
	Avg. Delay
HA-FA1
	Avg. Delay
FA1-FA2
	Tunnel Overhead

	MB
	ms
	
	ms
	ms
	ms
	Ms

	1
	2
	50
	63.459
	65.856
	61.282
	43.459

	1
	2
	100
	63.413
	64.507
	31.222
	53.353

	1
	2
	150
	63.109
	64.299
	30.39
	52.849

	1
	5
	50
	85.967
	60.021
	56.399
	59.967

	1
	5
	100
	66.331
	60.021
	50.848
	53.331

	1
	5
	150
	66.368
	59.473
	50.316
	53.368

	1
	10
	50
	67.529
	55.957
	36.857
	49.529

	1
	10
	100
	67.431
	53.642
	36.857
	49.431

	1
	10
	150
	67.513
	55.111
	36.921
	49.513


Table 5.1 1MB Bandwidth (NS-2 Simulator)

Table 5.1 shows the results collected from 1MB bandwidth group. For 1 MB bandwidth it is observed that complete average delay values are very high as compare to 5.5 MB and 11MB bandwidth groups. During the times when mobile node was under the influence of its home agent, it was seen that the delay values were around 20ms. When mobile node moved from home agent to foreign agent 1 and 2 handoff occurred twice and performance suffered. Delay values increased in spikes and maximum delay observed was in the range of 148ms to 180ms. 

For 1 MB bandwidth group, most of the times simulator results were seen unpredictable and the pattern didn’t match with results that were observed in lab setup. Detailed investigation showed that the significant percentage of bandwidth was consumed by the tunnel overhead and to retransmit the packets again. 

	BW
	Link Delay
	Queue Length
	Complete Avg. Delay
	Avg. Delay HA-FA1
	Avg. Delay FA1-FA2
	Tunnel
 Overhead

	MB
	ms
	
	ms
	ms
	ms
	ms

	5.5
	2
	50
	29.29
	29.322
	30.685
	9.381

	5.5
	2
	100
	29.619
	29.322
	30.685
	9.718

	5.5
	2
	150
	29.619
	29.322
	30.685
	9.718

	5.5
	5
	50
	32.909
	32.036
	34.016
	10.45

	5.5
	5
	100
	32.459
	32.049
	34.016
	9.559

	5.5
	5
	150
	32.459
	32.036
	34.76
	9.559

	5.5
	10
	50
	37.458
	36.998
	38.093
	21.004

	5.5
	10
	100
	37.458
	36.998
	38.093
	21.004

	5.5
	10
	150
	36.998
	38.09
	36.998
	20.544


Table 5.2 5.5MB Bandwidth (NS-2 Simulator)

In 5.5MB bandwidth group when link delay was increased, the performance of the network was reduced and complete average delay was increased. 

	BW
	Link Delay
	Queue Length
	Complete Avg. Delay
	Avg. Delay HA-FA1
	Avg. Delay FA1-FA2
	Tunnel 
Overhead

	MB
	ms
	
	ms
	ms
	ms
	ms

	11
	2
	50
	23.076
	22.78
	24.406
	2.954

	11
	2
	100
	23.076
	22.77
	24.321
	2.954

	11
	2
	150
	23.011
	22.67
	24.136
	2.889

	11
	5
	50
	26.027
	25.737
	27.629
	5.3

	11
	5
	100
	26.027
	25.739
	27.631
	5.573

	11
	5
	150
	26.198
	25.322
	27.823
	5.93

	11
	10
	50
	30.984
	30.597
	31.879
	3.418

	11
	10
	100
	30.984
	30.688
	24.548
	14.184

	11
	10
	150
	30.83
	30.597
	31.879
	11.103


Table 5.3 11MB Bandwidth (NS-2 Simulator)

When mobile node was transitioned between home agent and foreign agent 1 and foreign agent 1 and foreign agent 2, it experienced the maximum latency due to the handoff. Old tunnel was brought down and new tunnel was established. This put an extra load on the network and the packets that were in transition were lost and were resend again. During those times maximum delay reached in the range of 120-165ms. When mobile node reached at the foreign agent 2, it was settled down and delay observed was 2 ms. Average values given in the table 5.1,5.2 and 5.3 hide those transition points where the latency was at peak and showed the overall impact on the network.

CHAPTER 6

Routers Lab Test Bed

6.1 Initial setup

The test bed in the Cisco routers lab originally consisted of six routers as given in Figure 6.1. One router served as a home agent, two as foreign agents, one as a mobile router and remaining two constitutes IP cloud. Mobile IP was enabled on the home agent, the foreign agents, and the mobile node. Configuration for the routers in this scenario is given in appendix B.2.



Figure 6.1 Initial Network Diagram

Two PCs running Redhat Linux were selected as test client and server. The client was connected to the mobile router and the server was connected to router R1. The server acted as a correspondent node. The server was running the netperf server, also known as netserver. The client would initiate TCP data transfers from the server using the netperf utility. Netperf source code was modified in order to be able to extract network latency data. The Ethernet link that was shown between client and 13.x LAN segment was to configure routers automatically. This link did not take part in the TCP data communication and all data transfer was performed using wireless link. The process of collecting data was automated and software programs and scripts configured the routers and changed access point SSID on the fly to move mobile node from one network to another.

6.2 Wired Mobile IP

In the beginning, rather than using wireless connections between the mobile router and the mobility agents, simple Ethernet connections were used. This was done to assure that the mobile IP configuration was correct. Roaming was performed in this scenario by pulling out the Ethernet cable connected to the mobile router’s Ethernet roaming interface and connecting it to the foreign agents.

6.3 Wireless Mobile IP

Once the wired mobile IP setup was running, Cisco Aironet 340 wireless bridges were configured to operate as access points. Roaming was achieved by modifying the SSID (Service Set Identifier) property of the wireless bridge. Initially, the SSID of the bridge connected to the mobile router was the same as that of the home agent. It was then changed to the SSID of the foreign agents one by one, so that it would associate with them and roaming would be simulated. It should be noted that when the mobile router roamed to FA1, the routing tables on the mobile router and the home agent were as in Figure 6.2.

Figure 6.2 Home Agent and Mobile Node Routing Tables

The routing table on the mobile node had, in addition to the directly connected networks, entries for two mobile IP routes, indicated by the M symbol for the routing process. The first one was a host route (notice the /32) to the foreign agent through which the mobile node was authenticated. This was the interface of the foreign agent that was providing mobile IP foreign agent services, and not the care-of-address. This told the mobile node how to reach the foreign agent at layer 3, as the layer 3 addresses for the mobile node and the foreign agent were naturally in different subnets and routing ordinarily would not be possible without this route entry.

The other mobile IP route was the default route, which told the mobile node that it would trust the foreign agent to reach any network for which it did not have a specific routing table entry through any other routing process.

On the home agent, a mobile IP route to the mobile node with a hop count of 1 through interface tunnel 0 was established. This was specific for the case of a mobile router acting as a mobile node, in which case the home agent must be able to exchange routing information with the mobile router. With the mobile router in a foreign network, the home agent would not be directly connected to it, and routing would be disabled on the mobile router’s roaming interface. Thus a tunnel brought up to enable the home agent to see the mobile router as directly connected through this tunnel interface.

The tunnels were evident at the home agent and the foreign agent using the “show ip mobile tunnel” command. The results of the command are shown in Figure 6.3.

Figure 6.3 Mobile IP Tunnels

There was a tremendous amount of configuration required on this step to produce the results required for various values of bandwidth, interface delay, and interface queue size. Therefore, various programs were written in the expect programming language to automate the process.

The home agent showed two tunnels. The first one, as explained earlier, to exchange routing updates with the mobile router. The other tunnel is to route packets to the mobile node via the foreign agent. The entry point for this second tunnel, identified by src, is the home agent interface that can reach the foreign agent and the exit point, identified by dest, for this tunnel is the foreign agent care-of-address.

6.4 Test Bed Modification

The test bed was modified due to the fact that the old setup reflects a situation where the mobile router was used to simulate a mobile node instead of a real mobile node. To make the setup coherent with the NS-2 setup some modifications were introduced. This modified configuration is presented in appendix B.3. 

A laptop running Redhat Linux 6.1, with an Aironet wireless access point was then used for the mobile node, and the mobile router was eliminated from the scenario. The laptop was to run Sun’s implementation of mobile IP [10] (Sun mobile IP configuration is also provided in appendix B.4), once publicly available as source code at playground.sun.com but now only available with Solaris 8 operating system. The glitch, however, was that the Sun mobile IP package required Linux kernel version 2.0.36, whereas Redhat Linux 6.1 comes with kernel version 2.2.12-20. So, the required kernel source was downloaded and copied it to the laptop. The required libraries and the gcc compiler were also downloaded, and the required kernel was successfully compiled.

After booting from the new kernel, Sun mobile IP was compiled and configured according to the network scenario in Figure 6.4. 



Figure 6.4 Modified Network Scenario

The rest of the test bed was modified as follows:

· The mobile router was eliminated.

· Netperf client was now running on the laptop.  

· Two Aironet 340 wireless access points were connected to the home agent and one foreign agent.

The modified test bed is shown in Figure 6.4.

Roaming now would be achieved by running Sun mobile IP and then altering the contents of the file /opt/aironet/eth0/SSID to reflect the SSID of the agent to which associated with.

Due to the modified setup, new Expect and few Bash programs were written to run the tests. Also, at this point, netperf was modified to extract a few more parameters in addition to the average end to end delay, namely, minimum and maximum delay, as well as throughput.

The modified home agent configuration is shown in Figure 6.5


Figure 6.5 Modified Home Agent Configuration

6.5 Results

Results are shown here in 6.1,6.2 and 6.3 tables. They are grouped into bandwidths of 1,5.5 and 11MB. 

	Bandwidth
	Link Delay
	Queue Length
	Complete
Average Delay
	Average Delay
HA-FA1
	Average Delay
FA1-FA2
	Tunnel Overhead

	MB
	ms
	
	ms
	ms
	ms
	ms

	1
	2
	50
	55.023
	50.715
	59.156
	24.903

	1
	2
	100
	64.991
	61.795
	69.488
	34.371

	1
	2
	150
	65.87
	62.552
	69.45
	35.75

	1
	5
	50
	56.112
	50.551
	59.767
	25.422

	1
	5
	100
	65.735
	61.93
	62.553
	35.615

	1
	5
	150
	54.427
	50.717
	58.577
	24.287

	1
	10
	50
	66.172
	61.541
	56.612
	35.552

	1
	10
	100
	66.807
	61.913
	61.448
	36.117

	1
	10
	150
	53.948
	60.723
	64.608
	23.828


Table 6.1 1MB Bandwidth (Routers LAB)

1 MB bandwidth group performed worse among all of them. Tunnel overhead was almost 50 percent of the complete average delay. It showed that a major portion of the bandwidth was consumed by the tunnel overhead. 

During the times when mobile node was roaming, packets were dropped and it failed to get an acknowledgement in a reasonable amount of time. In response TCP slow start algorithm dramatically reduced the number of segments it transmits and waited a longer time before re-transmitting segments that have not yet been acknowledged. This caused delay in registration and fragmentation process and tunnel overhead was increased.

	Bandwidth
	Link Delay
	Queue Length
	Complete Average Delay
	Average Delay
HA-FA1
	Average Delay
FA1-FA2
	Tunnel Overhead

	MB
	Ms
	
	ms
	ms
	ms
	ms

	5.5
	2
	50
	42.705
	29.398
	51.518
	26.575

	5.5
	2
	100
	44.99
	31.164
	44.207
	28.37

	5.5
	2
	150
	44.112
	31.125
	51.868
	27.432

	5.5
	5
	50
	47.631
	42.736
	51.92
	31.511

	5.5
	5
	100
	45.309
	31.37
	38.141
	29.159

	5.5
	5
	150
	43.124
	31.124
	52.303
	27.004

	5.5
	10
	50
	42.35
	31.062
	52.196
	25.39

	5.5
	10
	100
	46.522
	31.18
	51.949
	30.402

	5.5
	10
	150
	35.262
	31.017
	38.554
	19.142


Table 6.2 5.5MB Bandwidth (Routers LAB)

Wireless network behavior is dependent on various factors including interference from nearby devices, geographic location and speed of the mobile node as well. In 5.5 MB group it was observed that complete average delay, average delay when mobile node was moving from HA to FA1 and average delay when mobile node was moving from FA1 to FA2 is reduced. This was because more bandwidth was available for data to be transmitted.

	Bandwidth
	Link Delay
	Queue Length
	Complete Average Delay
	Average Delay
HA-FA1
	Average Delay 
FA1-FA2
	Tunnel Overhead

	MB
	ms
	
	ms
	ms
	ms
	ms

	11
	2
	50
	35.86
	39.131
	43.389
	21.718

	11
	2
	100
	34.892
	28.824
	48.749
	20.767

	11
	2
	150
	35.02
	28.704
	37.538
	20.895

	11
	5
	50
	37.24
	39.145
	45.621
	23.115

	11
	5
	100
	34.964
	39.257
	52.762
	20.839

	11
	5
	150
	35.891
	39.13
	54.185
	21.765

	11
	10
	50
	33.103
	39.454
	54.328
	18.939

	11
	10
	100
	37.313
	39.068
	48.525
	23.151

	11
	10
	150
	34.187
	28.657
	52.792
	20.062


Table 6.3 11MB Bandwidth (Routers LAB)

Tunnel overhead was calculated during the time when mobile node roamed from one network to another. It remained almost the same in all three cases shown in tables 6.1,6.2 and 6.3, since roaming is performed by changing SSID of the mobile node.

CHAPTER 7

Conclusion

7.1 Summary of Results

This research tried to validate the effectiveness of a simulator based mobile IP wireless network environment and a real networking environment. Verification of a simulator or a specific simulator model is essential if the results of those simulations are to be believed. 

The approach that was chosen to validate the results was to create a test bed setup in NS-2 simulator environment and create a similar network setup in the LAB environment. The results were gathered and compared to see how closely related both models were. To decide whether NS-2 mobile IP model is good enough for real large, enterprise wide scalable networks, different parameters were selected to depict different network scenarios and situations. Wireless bandwidths of 1MB, 5.5MB and 11MB were chosen with varying link delay of 2, 5 and 10 milliseconds. To improve the outcome of the validation model one step further, variation in queue length was also examined. The resulting parameters that were used to validate the authenticity of simulator environment over real life situation included complete average delay (average delay when the mobile node moves from home agent to foreign agent), average delay HA-FA1 (average delay when mobile node moves from the home agent to foreign agent 1), average delay FA1-FA2 (average delay when mobile node moves from the foreign agent 1 network to the foreign agent 2 network) and tunnel overhead (the overhead in milliseconds due to tunnel).

Using the test bed setup in lab and in simulator and mentioned in Chapter 5 and 6, results were generated. A software package specifically written for this thesis was used to collect the data and to atomize the data collection steps. Using 1MB bandwidth, results showed that in NS-2 setup the tunnel overhead is significantly higher as compared to the results that were obtained from the lab setup. NS-2 failed to give correct tunnel overhead figures under 1 MB bandwidth. Analysis of NS-2 trace file indicates that NS-2 dropped more number of packets and tried to retransmit them that lead to increase tunnel overhead values during handoff. While going from home agent to foreign agent 2, home agent to foreign agent 1 and foreign agent 1 to foreign agent 2, network latencies were very close in all cases. 

In 5.5MB bandwidth group, figures show that the difference in complete average delay parameter is wider. Lab setup shows higher delays as compared to the NS-2 setup. But, home agent to foreign agent 1 and foreign agent 1 to foreign agent 2 average delay observations are very close to each other. Tunnel overhead is significantly higher in lab setup. This difference is due to the fact that in lab setup handoff was accomplished by changing SSID of the mobile node. NS-2 simulator handoff mechanism is based upon the strength of power received by mobility agents. For 2 milliseconds and 5 milliseconds of link delay figures the difference reaches up to approximately 20 milliseconds.

In 11MB bandwidth group, complete average delay, average delay from home agent to foreign agent 1, average delay from foreign agent 1 to foreign agent 2 and tunnel overhead is significantly less in simulator setup as compare to lab setup. Particularly tunnel overhead figures in NS-2 setup don’t match with that of lab setup, except for the cases when link delay was 10 milliseconds.

Network latencies and tunnel overhead reduced both in lab setup and in simulator setup, when higher bandwidths were used. It is found, overall, that the results that are gathered from the NS-2 setup and from the lab setup are very close.

Future Work 

The work presented in this research was based on moving one mobile node from network to network. It would be interesting to look into the aspect of determining and validating performance with more than one mobile node. This could be achieved in NS-2 simulator. Also, the work could be further extended by making the correspondent node mobile and have it run real time applications.
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AppendiCES

APPENDIX A

A.1 Source codes for NS-2 simulator

#!/bin/bash

########  autmote_ns.sh #####################################

#


                                            

#

# This file automate the process of running                   

#

# 81 ns simulation files. List of those files                 


#

# is get from list_of_tcl_files.txt file and one by one       

#

# its written into another file called execute_commands_ns.sh 

#

##########################################################

let var1=82

## 82 is the total number of simulations                                      

##

## Following while loop generate a file called execute_commands_ns.sh that   
##

## contains commands to be executes to run ns2 and to generates the scores   
##  

## It first read a file called list_of_tcl_files.txt that has all names of   

##

## the tcl scenario scrips                                                   


##

## This list of file can be creates using ls *.tcl command

     
##

while [ $var1 -ge 1 ]

do

 echo "ns `tail -n $var1 list_of_tcl_files.txt | head -1` 2> pkts_dropped.txt"  >> execute_commands_ns.sh 

 echo "./create_delay_file.tcsh mywire7.tr" `tail -n $var1 list_of_tcl_files.txt | head -1` >> execute_commands_ns.sh

 echo " " >> execute_commands_ns.sh

 let var1=$var1-1

done

## Now run the execute_commands_ns.sh to get the results 

##

## Or add the command to run this file into this script  

##

## file to make the work more automated                  


##

## I like to have at least some control in my hands      

##

## always. Of course this program is written by me so it 

##

## might have some bugs also. :)                         


##

## Now changing the rights of the script also             


##

chmod 755 execute_commands_ns.sh

#!/bin/tcsh

        ##### create_delay_file.tcsh                                  

#####

        ##### The fllowing code checks for the command line arguments 
#####

        #####                                                         


#####

        if ( $#argv != 2 ) then

        echo usage:

        echo "  " $0 \<trace file\> \<Email Subject "no spaces"\>

        exit 1

        endif

        #### Set simulation environemt and variables                  

#####

        echo " Runnin ns simulator .........." ;

        set TraceFile=$1 ;

        set Email=$2 ;

        set Final_Avg=a ;

        set upath=/unixhome/s1ali/mywire7 ;

        set total_packets_dropped=0 ;

        set total_packets_sent=0 ;

        set total_packets_drop=0 ;

        #### Commentary for the user running simulations              
#####

        echo -n " Generating only tcp delay file out of Wireless Trace File.."

        echo -n "."

        echo -n "."

        echo "."

        #### Lines below are commented out for future reference        
#####

        #cat mywire5.tr | grep -e "-------" > only_delay_info_mywire5.tr

        #cat mywwire5.tr | grep -e "-Nz" > only_mip_info_mywire5.tr

        #echo -n "Total # of lines : "

        #wc -l mywire5.tr

        #echo "Total # of lines in two files:"

        #wc -l only_delay_info_mywire5.tr only_mip_info_mywire5.tr

        #### Following code just picks the TCP information out of     
#####

        #### complex and large trace file. Trace file format is non-   
#####

        #### uniform and its normally 150 - 250 MB file              

#####

        echo " Running awk script to gather just TCP Info"

        awk -f grab_tcp_info.awk $TraceFile > tcp_info.tr

        echo " Invoking awk script to calculate the time delay ...."

        #awk -f e2e_delay_mywire5.awk only_delay_info_mywire5.tr > delay_result.txt

        #awk -f e2e_mip.awk only_mip_info_mywire5.tr > delay_result.txt

        #awk -f e2e_delay_mywire5.awk mywire5.tr > delay_result.txt

        awk -f e2e_delay_mywire7.awk tcp_info.tr > delay_result.txt

        ./delay_avg2.out delay_result.txt

        set Final_Avg=`./final_avg_delay.sh delay_avg2.txt`

        echo $Final_Avg >> THE_FINAL_AVG.txt

        #####   Following piece of code calls a program called

#####

        #####   pkt_drop_probab.sh                                     

#####

        #####   and gets probablity of pakcet drops in %               

#####

        #####  set pkt_drop_probab=`./pkt_drop_probab.sh`        

#####

        #####  echo $pkt_drop_probab                                   

#####

        ##### There is an easy way of doing same thing to embed the    
#####

        ##### code into this program itself                           

#####

        ####


                                         

####

        #### pkts_drop_probab.sh                                        

####

        #### This program calculates total number of packets dropped    
####

        #### and then toal number of packets sent during a simulation   
####

        #### and then calcualtes the probablity in %                    

####

        echo " ------------------------------------------------------------"

        set total_packets_sent=`awk '$1 == "s"' mywire7.tr | wc -l`

        echo " Total number of packets sent       : "  $total_packets_sent

        set total_packets_drop=`awk '/dropping/' pkts_dropped.txt | wc -l`

        echo " Total packets retransmitted        : " $total_packets_drop

        set pkt_drop_probab=`echo $total_packets_drop $total_packets_sent | awk '{print ($1/$2)*100}'`

        echo -n " Probablity of packets retransmitted: " $pkt_drop_probab

        echo "%"

        echo " ------------------------------------------------------------"

        set min_delay=`awk -f minimum_delay.awk delay_result.txt`

        #echo "Minimum Delay = $min_delay"

#echo "$Email=$Final_Avg pkt_drop=$pkt_drop_probab"

mutt -a delay_avg2.txt -s "$Email=$Final_Avg pkt_drop=$pkt_drop_probab MinDLY=$min_delay" ssali@checkinfo.net < /dev/null

#xgraph delay_avg2.txt &

# grab_tcp_info.awk

BEGIN 
{


highest_packet_id = 0;


# printf("This is my new awk program.\n");


# printf("Checks for tcp data only in the old trace format file\n");


}


{


action = $1 ;

# could be D,r,s



field4 = $4 ; 

# AGT field


field5 = $5 ;

# ack/tcp field

        
field9 = $9 ;

# source node address


field10= $10 ;

# destination node address


field11= $11 ;

# sequence number


field12= $12 ;

# unique packet identifier


# source-node = w(0) ; dest-node = MN


if ( field5 == "tcp" && field9 == "0.0.0.0" && field10 == "1.0.1.2" )


print $0 ;


}

END
{


printf("\nend");


exit 0 ;


}

# e2e_delay_mywire7.awk

BEGIN {

   # simple awk script to generate end-to-end packet lifetime statistics

   highest_packet_id = 0;

}

{

   action = $1;


# could be d or r 

   time = $2;

   node_1 = $3;

   node_2 = $4;

   src = $5;

   flow_id = $8; 

   node_1_address = $9;

   node_2_address = $10; 

   seq_no = $11;

   packet_id = $12;

   if ( packet_id > highest_packet_id ) highest_packet_id = packet_id;

   # getting start time is not a problem, provided you're not starting

   # traffic at 0.0.

   # could test for sending node_1_address or flow_id here.

   if ( start_time[packet_id] == 0 )  start_time[packet_id] = time;

   # only useful for small unicast where packet_id doesn't wrap.

   # checking receive means avoiding recording drops

   if ( action != "d" ) {

      if ( action == "r" ) {

         # could test for receiving node_2_address or flow_id here.

         end_time[packet_id] = time;

      }

   } else {

      end_time[packet_id] = -1;

   }

}                                                         

END {

    for ( packet_id = 0; packet_id <= highest_packet_id; packet_id++ ) {

       start = start_time[packet_id];

       end = end_time[packet_id];

       packet_duration = end - start;

       if ( start < end ) printf("%d %f\n", start, packet_duration);

   }

}

/*** delay_avg2.cpp ***/

#include <iostream.h>

#include <string.h>

#include <stdio.h>

#include <stdlib.h>

#include <fstream.h>

int main(int argc, char *argv[])

{

 if (argc !=2 )

 {

 printf("Error!!\n");

 printf("Example usage: delay_avg2.out <delay_result.txt>\n");

 exit(0);

 }




cout << "-----------------------------" << "\n"  ;

int   FPre =0 ;

float FPost=0 ;

int track = 0  ;

int count = 0;

double sum=0.0;

int  oldFPre=0;
float AvgFPost=0;
int n=1;

FILE *fptr ;

ofstream a_file("delay_avg2.txt");



  fptr = fopen(argv[1],"r");



  while (fscanf(fptr,"%d %f",&FPre,&FPost) != EOF )



  {




if (oldFPre == FPre && track == 1)




{


 
        AvgFPost = AvgFPost + FPost;



  
n++;




}




else {




     cout << AvgFPost << " " << n << "\n" ;




     cout << "Time="<<oldFPre<< " Average Delay=" << AvgFPost/n << "\n" ;




     a_file << oldFPre << " " << AvgFPost/n << "\n" ;

                             sum=sum+AvgFPost/n;

                             count++;




     track=0 ; n=0 ; AvgFPost=0 ;





     }




   printf("%d  %f\n",FPre,FPost);


 
  
if(track ==0)


//comming first time



  
{




AvgFPost = AvgFPost + FPost;




n++ ;



  
oldFPre = FPre ;



  
track = 1;



  
}



  } // EO while(fscanf)


        cout << AvgFPost << " " << n << "\n" ;


cout << "Time="<< oldFPre << " Average=" << AvgFPost/n << "\n" ; 

        
a_file << oldFPre << " " << AvgFPost/n << "\n" ;

        
cout<< "\nAverage delay is           : " << sum/count<<"\n";


fclose(fptr);


a_file.close();


return 0 ;

}

#!/bin/bash


#### 

final_avg_delay.sh

####


#### General maintanence check comes here 
####


#### Checks for the correct command line  

####


#### arguments.



  
####


if test $# -lt 1 


 then echo "usage:"


 echo "$0 <delay_avg2.txt>"


 exit 1 


fi


#### This calculate average on the scale 

####

        
#### of 12 decimal places, using bc calculator  
####

        
#### It divide sum of row averages to the total 
####

        
#### number of lines.                           

####


calculate_average_function()


{


#echo "Sum is= $row_avg"


#echo $tnl ; # tnl = total number of lines


#echo `expr "$row_avg / $tnl" | bc`


echo "scale=8; $row_avg / $tnl" | bc


exit 0


}


# set TraceFile = $1

      
#### Since total_lines is an string so to

####

#### convert it to the integer value expr is    

####

      
#### used with a plus 0 here.


####


set upath=$PATH/mywire6


total_lines=`wc -l delay_avg2.txt | tr -s " " | cut -f 2 -d " "`


tnl=`expr $total_lines + 0`


#echo "tnl=$tnl"


let row_avg=0


   let var1=0


   while [ $var1 -le $tnl ]


   do


   let tail_count=$tnl-$var1


       if test $tail_count -eq 0 ; then


       calculate_average_function


       fi


   row=`tail -n $tail_count delay_avg2.txt| tr -s " " | head -n 1|cut -f 2 -d " "`


   row=`expr "$row + 0.0" | bc`         


   row_avg=`expr "$row_avg + $row" | bc`


   let var1=var1+1


   done  

### This Program minimum_delay.awk calculates the minimum delay from the file
###

### called delay_result.txt. This delay is used to calculate the tunnel overhead.  

###

### Since this delay is actually the dealy when mobile node is not moving and is   
###

### in its home network. We will subtract this delay from the average delay        

###

BEGIN { 

        ### initialize variables 






###


        ### temp_min used to store running minimum delay value
           

###

        ### delay_column is the value picked from the second column of delay_result file   
###

        temp_min=100 ;

        delay_column=0.0 ;

      }

         {

          delay_column=$2 ; 

          #printf("\t%f",delay_column); 

          if (delay_column < temp_min) 

          {

          temp_min=delay_column;     

          } 

         }   

END {

    printf("%f\n",temp_min) ;

    exit 0 ;

    }

A.2 Sample of NS-2 trace file

+ 68.390778 2 1 ack 60 ------- 2 1.0.1.2 0.0.0.0 6305 12973

- 68.390778 2 1 ack 60 ------- 2 1.0.1.2 0.0.0.0 6305 12973

r 68.390796 1 2 tcp 1020 ------- 2 0.0.0.1 2.0.0.1 6314 12972

+ 68.390796 2 4 tcp 1020 ------- 2 0.0.0.1 2.0.0.1 6314 12972

- 68.390796 2 4 tcp 1020 ------- 2 0.0.0.1 2.0.0.1 6314 12972

r 68.391199 2 4 tcp 1020 ------- 2 0.0.0.1 2.0.0.1 6313 12970

r 68.391752002 _6_ AGT  --- 12968 tcp 1000 [a2 3 1 800] ------- [0:0 4194305:2 28 4194305] [6312 0] 1 0

s 68.391752002 _6_ AGT  --- 12986 ack 40 [0 0 0 0] ------- [4194305:2 0:0 32 0] [6312 0] 0 0

r 68.391989 4 2 ack 60 ------- 2 1.0.1.2 0.0.0.0 6306 12974

+ 68.391989 2 1 ack 60 ------- 2 1.0.1.2 0.0.0.0 6306 12974

- 68.391989 2 1 ack 60 ------- 2 1.0.1.2 0.0.0.0 6306 12974

+ 68.392942 4 2 ack 60 ------- 2 1.0.1.2 0.0.0.0 6307 12977

- 68.392942 4 2 ack 60 ------- 2 1.0.1.2 0.0.0.0 6307 12977

+ 68.393994 4 2 ack 60 ------- 2 1.0.1.2 0.0.0.0 6308 12979

- 68.393994 4 2 ack 60 ------- 2 1.0.1.2 0.0.0.0 6308 12979

r 68.395445 3 1 tcp 1020 ------- 2 0.0.0.1 2.0.0.1 6315 12975

+ 68.395445 1 2 tcp 1020 ------- 2 0.0.0.1 2.0.0.1 6315 12975

- 68.395445 1 2 tcp 1020 ------- 2 0.0.0.1 2.0.0.1 6315 12975

r 68.395865 2 1 ack 60 ------- 2 1.0.1.2 0.0.0.0 6305 12973

+ 68.395865 1 0 ack 60 ------- 2 1.0.1.2 0.0.0.0 6305 12973

- 68.395865 1 0 ack 60 ------- 2 1.0.1.2 0.0.0.0 6305 12973

r 68.396039 0 1 tcp 1000 ------- 2 0.0.0.0 1.0.1.2 6318 12980

+ 68.396039 1 3 tcp 1000 ------- 2 0.0.0.0 1.0.1.2 6318 12980

- 68.396039 1 3 tcp 1000 ------- 2 0.0.0.0 1.0.1.2 6318 12980

r 68.396128 1 0 ack 60 ------- 2 1.0.1.2 0.0.0.0 6301 12964

+ 68.396128 0 1 tcp 1000 ------- 2 0.0.0.0 1.0.1.2 6321 12987

- 68.396128 0 1 tcp 1000 ------- 2 0.0.0.0 1.0.1.2 6321 12987

r 68.396493 1 3 tcp 1000 ------- 2 0.0.0.0 1.0.1.2 6317 12978

+ 68.396493 3 1 tcp 1020 ------- 2 0.0.0.1 2.0.0.1 6317 12978

- 68.396493 3 1 tcp 1020 ------- 2 0.0.0.1 2.0.0.1 6317 12978

r 68.396928 3 1 tcp 1020 ------- 2 0.0.0.1 2.0.0.1 6316 12976

+ 68.396928 1 2 tcp 1020 ------- 2 0.0.0.1 2.0.0.1 6316 12976

- 68.396928 1 2 tcp 1020 ------- 2 0.0.0.1 2.0.0.1 6316 12976

r 68.397076 2 1 ack 60 ------- 2 1.0.1.2 0.0.0.0 6306 12974

+ 68.397076 1 0 ack 60 ------- 2 1.0.1.2 0.0.0.0 6306 12974

- 68.397076 1 0 ack 60 ------- 2 1.0.1.2 0.0.0.0 6306 12974

r 68.397279 1 0 ack 60 ------- 2 1.0.1.2 0.0.0.0 6302 12967

+ 68.397279 0 1 tcp 1000 ------- 2 0.0.0.0 1.0.1.2 6322 12988

r 68.39728 2 4 tcp 1020 ------- 2 0.0.0.1 2.0.0.1 6314 12972

- 68.397582 0 1 tcp 1000 ------- 2 0.0.0.0 1.0.1.2 6322 12988

r 68.39803 4 2 ack 60 ------- 2 1.0.1.2 0.0.0.0 6307 12977

+ 68.39803 2 1 ack 60 ------- 2 1.0.1.2 0.0.0.0 6307 12977

- 68.39803 2 1 ack 60 ------- 2 1.0.1.2 0.0.0.0 6307 12977

r 68.399081 4 2 ack 60 ------- 2 1.0.1.2 0.0.0.0 6308 12979

+ 68.399081 2 1 ack 60 ------- 2 1.0.1.2 0.0.0.0 6308 12979

- 68.399081 2 1 ack 60 ------- 2 1.0.1.2 0.0.0.0 6308 12979

r 68.399103948 _6_ AGT  --- 12970 tcp 1000 [a2 3 1 800] ------- [0:0 4194305:2 28 4194305] [6313 0] 1 0

s 68.399103948 _6_ AGT  --- 12989 ack 40 [0 0 0 0] ------- [4194305:2 0:0 32 0] [6313 0] 0 0

+ 68.400174 4 2 ack 60 ------- 2 1.0.1.2 0.0.0.0 6309 12981

- 68.400174 4 2 ack 60 ------- 2 1.0.1.2 0.0.0.0 6309 12981

r 68.401928 1 2 tcp 1020 ------- 2 0.0.0.1 2.0.0.1 6315 12975

+ 68.401928 2 4 tcp 1020 ------- 2 0.0.0.1 2.0.0.1 6315 12975

- 68.401928 2 4 tcp 1020 ------- 2 0.0.0.1 2.0.0.1 6315 12975

r 68.402494 1 3 tcp 1000 ------- 2 0.0.0.0 1.0.1.2 6318 12980

+ 68.402494 3 1 tcp 1020 ------- 2 0.0.0.1 2.0.0.1 6318 12980

- 68.402494 3 1 tcp 1020 ------- 2 0.0.0.1 2.0.0.1 6318 12980

r 68.402977 3 1 tcp 1020 ------- 2 0.0.0.1 2.0.0.1 6317 12978

+ 68.402977 1 2 tcp 1020 ------- 2 0.0.0.1 2.0.0.1 6317 12978

- 68.402977 1 2 tcp 1020 ------- 2 0.0.0.1 2.0.0.1 6317 12978

r 68.403117 2 1 ack 60 ------- 2 1.0.1.2 0.0.0.0 6307 12977

+ 68.403117 1 0 ack 60 ------- 2 1.0.1.2 0.0.0.0 6307 12977

- 68.403117 1 0 ack 60 ------- 2 1.0.1.2 0.0.0.0 6307 12977

r 68.403412 1 2 tcp 1020 ------- 2 0.0.0.1 2.0.0.1 6316 12976

+ 68.403412 2 4 tcp 1020 ------- 2 0.0.0.1 2.0.0.1 6316 12976

- 68.403412 2 4 tcp 1020 ------- 2 0.0.0.1 2.0.0.1 6316 12976

r 68.404168 2 1 ack 60 ------- 2 1.0.1.2 0.0.0.0 6308 12979

+ 68.404168 1 0 ack 60 ------- 2 1.0.1.2 0.0.0.0 6308 12979

- 68.404168 1 0 ack 60 ------- 2 1.0.1.2 0.0.0.0 6308 12979

r 68.405262 4 2 ack 60 ------- 2 1.0.1.2 0.0.0.0 6309 12981

+ 68.405262 2 1 ack 60 ------- 2 1.0.1.2 0.0.0.0 6309 12981

- 68.405262 2 1 ack 60 ------- 2 1.0.1.2 0.0.0.0 6309 12981

r 68.406400307 _6_ AGT  --- 12972 tcp 1000 [a2 3 1 800] ------- [0:0 4194305:2 28 4194305] [6314 0] 1 0

s 68.406400307 _6_ AGT  --- 12990 ack 40 [0 0 0 0] ------- [4194305:2 0:0 32 0] [6314 0] 0 0

+ 68.408131 4 2 ack 60 ------- 2 1.0.1.2 0.0.0.0 6310 12982

- 68.408131 4 2 ack 60 ------- 2 1.0.1.2 0.0.0.0 6310 12982

r 68.408291 1 0 ack 60 ------- 2 1.0.1.2 0.0.0.0 6303 12969

+ 68.408291 0 1 tcp 1000 ------- 2 0.0.0.0 1.0.1.2 6323 12991

- 68.408291 0 1 tcp 1000 ------- 2 0.0.0.0 1.0.1.2 6323 12991

r 68.408412 2 4 tcp 1020 ------- 2 0.0.0.1 2.0.0.1 6315 12975

r 68.408977 3 1 tcp 1020 ------- 2 0.0.0.1 2.0.0.1 6318 12980

+ 68.408977 1 2 tcp 1020 ------- 2 0.0.0.1 2.0.0.1 6318 12980

- 68.408977 1 2 tcp 1020 ------- 2 0.0.0.1 2.0.0.1 6318 12980

r 68.40946 1 2 tcp 1020 ------- 2 0.0.0.1 2.0.0.1 6317 12978

+ 68.40946 2 4 tcp 1020 ------- 2 0.0.0.1 2.0.0.1 6317 12978

- 68.40946 2 4 tcp 1020 ------- 2 0.0.0.1 2.0.0.1 6317 12978

r 68.409896 2 4 tcp 1020 ------- 2 0.0.0.1 2.0.0.1 6316 12976

r 68.410221 0 1 tcp 1000 ------- 2 0.0.0.0 1.0.1.2 6319 12983

+ 68.410221 1 3 tcp 1000 ------- 2 0.0.0.0 1.0.1.2 6319 12983

- 68.410221 1 3 tcp 1000 ------- 2 0.0.0.0 1.0.1.2 6319 12983

r 68.410349 2 1 ack 60 ------- 2 1.0.1.2 0.0.0.0 6309 12981

+ 68.410349 1 0 ack 60 ------- 2 1.0.1.2 0.0.0.0 6309 12981

- 68.410349 1 0 ack 60 ------- 2 1.0.1.2 0.0.0.0 6309 12981

r 68.413110302 _6_ AGT  --- 12975 tcp 1000 [a2 3 1 800] ------- [0:0 4194305:2 28 4194305] [6315 0] 1 0

s 68.413110302 _6_ AGT  --- 12992 ack 40 [0 0 0 0] ------- [4194305:2 0:0 32 0] [6315 0] 0 0

r 68.413218 4 2 ack 60 ------- 2 1.0.1.2 0.0.0.0 6310 12982

+ 68.413218 2 1 ack 60 ------- 2 1.0.1.2 0.0.0.0 6310 12982

- 68.413218 2 1 ack 60 ------- 2 1.0.1.2 0.0.0.0 6310 12982

r 68.414511 1 0 ack 60 ------- 2 1.0.1.2 0.0.0.0 6304 12971

+ 68.414511 0 1 tcp 1000 ------- 2 0.0.0.0 1.0.1.2 6324 12993

- 68.414511 0 1 tcp 1000 ------- 2 0.0.0.0 1.0.1.2 6324 12993

+ 68.415096 4 2 ack 60 ------- 2 1.0.1.2 0.0.0.0 6311 12984

- 68.415096 4 2 ack 60 ------- 2 1.0.1.2 0.0.0.0 6311 12984

r 68.415461 1 2 tcp 1020 ------- 2 0.0.0.1 2.0.0.1 6318 12980

+ 68.415461 2 4 tcp 1020 ------- 2 0.0.0.1 2.0.0.1 6318 12980

- 68.415461 2 4 tcp 1020 ------- 2 0.0.0.1 2.0.0.1 6318 12980

r 68.415944 2 4 tcp 1020 ------- 2 0.0.0.1 2.0.0.1 6317 12978

r 68.416541 0 1 tcp 1000 ------- 2 0.0.0.0 1.0.1.2 6320 12985

+ 68.416541 1 3 tcp 1000 ------- 2 0.0.0.0 1.0.1.2 6320 12985

- 68.416541 1 3 tcp 1000 ------- 2 0.0.0.0 1.0.1.2 6320 12985

+ 68.416627 4 2 ack 60 ------- 2 1.0.1.2 0.0.0.0 6312 12986

- 68.416627 4 2 ack 60 ------- 2 1.0.1.2 0.0.0.0 6312 12986

r 68.416675 1 3 tcp 1000 ------- 2 0.0.0.0 1.0.1.2 6319 12983

+ 68.416675 3 1 tcp 1020 ------- 2 0.0.0.1 2.0.0.1 6319 12983

- 68.416675 3 1 tcp 1020 ------- 2 0.0.0.1 2.0.0.1 6319 12983

+ 68.418259 4 2 ack 60 ------- 2 1.0.1.2 0.0.0.0 6313 12989

- 68.418259 4 2 ack 60 ------- 2 1.0.1.2 0.0.0.0 6313 12989

r 68.418305 2 1 ack 60 ------- 2 1.0.1.2 0.0.0.0 6310 12982

+ 68.418305 1 0 ack 60 ------- 2 1.0.1.2 0.0.0.0 6310 12982

- 68.418305 1 0 ack 60 ------- 2 1.0.1.2 0.0.0.0 6310 12982

r 68.420184 4 2 ack 60 ------- 2 1.0.1.2 0.0.0.0 6311 12984

+ 68.420184 2 1 ack 60 ------- 2 1.0.1.2 0.0.0.0 6311 12984

- 68.420184 2 1 ack 60 ------- 2 1.0.1.2 0.0.0.0 6311 12984

r 68.420952 1 0 ack 60 ------- 2 1.0.1.2 0.0.0.0 6305 12973

+ 68.420952 0 1 tcp 1000 ------- 2 0.0.0.0 1.0.1.2 6325 12994

- 68.420952 0 1 tcp 1000 ------- 2 0.0.0.0 1.0.1.2 6325 12994

r 68.421715 4 2 ack 60 ------- 2 1.0.1.2 0.0.0.0 6312 12986

+ 68.421715 2 1 ack 60 ------- 2 1.0.1.2 0.0.0.0 6312 12986

- 68.421715 2 1 ack 60 ------- 2 1.0.1.2 0.0.0.0 6312 12986

r 68.421945 2 4 tcp 1020 ------- 2 0.0.0.1 2.0.0.1 6318 12980

r 68.422163 1 0 ack 60 ------- 2 1.0.1.2 0.0.0.0 6306 12974

+ 68.422163 0 1 tcp 1000 ------- 2 0.0.0.0 1.0.1.2 6326 12995

- 68.422407 0 1 tcp 1000 ------- 2 0.0.0.0 1.0.1.2 6326 12995

r 68.422582 0 1 tcp 1000 ------- 2 0.0.0.0 1.0.1.2 6321 12987

+ 68.422582 1 3 tcp 1000 ------- 2 0.0.0.0 1.0.1.2 6321 12987

- 68.422582 1 3 tcp 1000 ------- 2 0.0.0.0 1.0.1.2 6321 12987

r 68.422996 1 3 tcp 1000 ------- 2 0.0.0.0 1.0.1.2 6320 12985

+ 68.422996 3 1 tcp 1020 ------- 2 0.0.0.1 2.0.0.1 6320 12985

- 68.422996 3 1 tcp 1020 ------- 2 0.0.0.1 2.0.0.1 6320 12985

r 68.423159 3 1 tcp 1020 ------- 2 0.0.0.1 2.0.0.1 6319 12983

+ 68.423159 1 2 tcp 1020 ------- 2 0.0.0.1 2.0.0.1 6319 12983

- 68.423159 1 2 tcp 1020 ------- 2 0.0.0.1 2.0.0.1 6319 12983

r 68.423209029 _6_ AGT  --- 12976 tcp 1000 [a2 3 1 800] ------- [0:0 4194305:2 28 4194305] [6316 0] 1 0

s 68.423209029 _6_ AGT  --- 12996 ack 40 [0 0 0 0] ------- [4194305:2 0:0 32 0] [6316 0] 0 0

r 68.423346 4 2 ack 60 ------- 2 1.0.1.2 0.0.0.0 6313 12989

+ 68.423346 2 1 ack 60 ------- 2 1.0.1.2 0.0.0.0 6313 12989

- 68.423346 2 1 ack 60 ------- 2 1.0.1.2 0.0.0.0 6313 12989

r 68.424037 0 1 tcp 1000 ------- 2 0.0.0.0 1.0.1.2 6322 12988

+ 68.424037 1 3 tcp 1000 ------- 2 0.0.0.0 1.0.1.2 6322 12988

- 68.424037 1 3 tcp 1000 ------- 2 0.0.0.0 1.0.1.2 6322 12988

+ 68.424559 4 2 ack 60 ------- 2 1.0.1.2 0.0.0.0 6314 12990

- 68.424559 4 2 ack 60 ------- 2 1.0.1.2 0.0.0.0 6314 12990

r 68.425271 2 1 ack 60 ------- 2 1.0.1.2 0.0.0.0 6311 12984

+ 68.425271 1 0 ack 60 ------- 2 1.0.1.2 0.0.0.0 6311 12984

- 68.425271 1 0 ack 60 ------- 2 1.0.1.2 0.0.0.0 6311 12984

+ 68.425611 4 2 ack 60 ------- 2 1.0.1.2 0.0.0.0 6315 12992

- 68.425611 4 2 ack 60 ------- 2 1.0.1.2 0.0.0.0 6315 12992

r 68.426802 2 1 ack 60 ------- 2 1.0.1.2 0.0.0.0 6312 12986

+ 68.426802 1 0 ack 60 ------- 2 1.0.1.2 0.0.0.0 6312 12986

- 68.426802 1 0 ack 60 ------- 2 1.0.1.2 0.0.0.0 6312 12986

+ 68.427576 4 2 ack 60 ------- 2 1.0.1.2 0.0.0.0 6316 12996

- 68.427576 4 2 ack 60 ------- 2 1.0.1.2 0.0.0.0 6316 12996

r 68.428204 1 0 ack 60 ------- 2 1.0.1.2 0.0.0.0 6307 12977

+ 68.428204 0 1 tcp 1000 ------- 2 0.0.0.0 1.0.1.2 6327 12997

- 68.428204 0 1 tcp 1000 ------- 2 0.0.0.0 1.0.1.2 6327 12997

r 68.428433 2 1 ack 60 ------- 2 1.0.1.2 0.0.0.0 6313 12989

+ 68.428433 1 0 ack 60 ------- 2 1.0.1.2 0.0.0.0 6313 12989

- 68.428433 1 0 ack 60 ------- 2 1.0.1.2 0.0.0.0 6313 12989

r 68.429037 1 3 tcp 1000 ------- 2 0.0.0.0 1.0.1.2 6321 12987

+ 68.429037 3 1 tcp 1020 ------- 2 0.0.0.1 2.0.0.1 6321 12987

- 68.429037 3 1 tcp 1020 ------- 2 0.0.0.1 2.0.0.1 6321 12987

r 68.429255 1 0 ack 60 ------- 2 1.0.1.2 0.0.0.0 6308 12979

+ 68.429255 0 1 tcp 1000 ------- 2 0.0.0.0 1.0.1.2 6328 12998

r 68.42948 3 1 tcp 1020 ------- 2 0.0.0.1 2.0.0.1 6320 12985

+ 68.42948 1 2 tcp 1020 ------- 2 0.0.0.1 2.0.0.1 6320 12985

- 68.42948 1 2 tcp 1020 ------- 2 0.0.0.1 2.0.0.1 6320 12985

r 68.429642 1 2 tcp 1020 ------- 2 0.0.0.1 2.0.0.1 6319 12983

+ 68.429642 2 4 tcp 1020 ------- 2 0.0.0.1 2.0.0.1 6319 12983

- 68.429642 2 4 tcp 1020 ------- 2 0.0.0.1 2.0.0.1 6319 12983

r 68.429647 4 2 ack 60 ------- 2 1.0.1.2 0.0.0.0 6314 12990

+ 68.429647 2 1 ack 60 ------- 2 1.0.1.2 0.0.0.0 6314 12990

- 68.429647 2 1 ack 60 ------- 2 1.0.1.2 0.0.0.0 6314 12990

- 68.429659 0 1 tcp 1000 ------- 2 0.0.0.0 1.0.1.2 6328 12998

r 68.430491 1 3 tcp 1000 ------- 2 0.0.0.0 1.0.1.2 6322 12988

+ 68.430491 3 1 tcp 1020 ------- 2 0.0.0.1 2.0.0.1 6322 12988

- 68.43052 3 1 tcp 1020 ------- 2 0.0.0.1 2.0.0.1 6322 12988

r 68.430698 4 2 ack 60 ------- 2 1.0.1.2 0.0.0.0 6315 12992

+ 68.430698 2 1 ack 60 ------- 2 1.0.1.2 0.0.0.0 6315 12992

- 68.430698 2 1 ack 60 ------- 2 1.0.1.2 0.0.0.0 6315 12992

r 68.432406170 _6_ AGT  --- 12978 tcp 1000 [a2 3 1 800] ------- [0:0 4194305:2 28 4194305] [6317 0] 1 0

s 68.432406170 _6_ AGT  --- 12999 ack 40 [0 0 0 0] ------- [4194305:2 0:0 32 0] [6317 0] 0 0

r 68.432663 4 2 ack 60 ------- 2 1.0.1.2 0.0.0.0 6316 12996

+ 68.432663 2 1 ack 60 ------- 2 1.0.1.2 0.0.0.0 6316 12996

- 68.432663 2 1 ack 60 ------- 2 1.0.1.2 0.0.0.0 6316 12996

+ 68.433477 4 2 ack 60 ------- 2 1.0.1.2 0.0.0.0 6317 12999

- 68.433477 4 2 ack 60 ------- 2 1.0.1.2 0.0.0.0 6317 12999

r 68.434734 2 1 ack 60 ------- 2 1.0.1.2 0.0.0.0 6314 12990

+ 68.434734 1 0 ack 60 ------- 2 1.0.1.2 0.0.0.0 6314 12990

- 68.434734 1 0 ack 60 ------- 2 1.0.1.2 0.0.0.0 6314 12990

r 68.434745 0 1 tcp 1000 ------- 2 0.0.0.0 1.0.1.2 6323 12991

+ 68.434745 1 3 tcp 1000 ------- 2 0.0.0.0 1.0.1.2 6323 12991

- 68.434745 1 3 tcp 1000 ------- 2 0.0.0.0 1.0.1.2 6323 12991

r 68.435436 1 0 ack 60 ------- 2 1.0.1.2 0.0.0.0 6309 12981

+ 68.435436 0 1 tcp 1000 ------- 2 0.0.0.0 1.0.1.2 6329 13000

- 68.435436 0 1 tcp 1000 ------- 2 0.0.0.0 1.0.1.2 6329 13000

r 68.43552 3 1 tcp 1020 ------- 2 0.0.0.1 2.0.0.1 6321 12987

+ 68.43552 1 2 tcp 1020 ------- 2 0.0.0.1 2.0.0.1 6321 12987

- 68.43552 1 2 tcp 1020 ------- 2 0.0.0.1 2.0.0.1 6321 12987

r 68.435785 2 1 ack 60 ------- 2 1.0.1.2 0.0.0.0 6315 12992

+ 68.435785 1 0 ack 60 ------- 2 1.0.1.2 0.0.0.0 6315 12992

- 68.435785 1 0 ack 60 ------- 2 1.0.1.2 0.0.0.0 6315 12992

r 68.435963 1 2 tcp 1020 ------- 2 0.0.0.1 2.0.0.1 6320 12985

+ 68.435963 2 4 tcp 1020 ------- 2 0.0.0.1 2.0.0.1 6320 12985

- 68.435963 2 4 tcp 1020 ------- 2 0.0.0.1 2.0.0.1 6320 12985

r 68.436126 2 4 tcp 1020 ------- 2 0.0.0.1 2.0.0.1 6319 12983

r 68.437004 3 1 tcp 1020 ------- 2 0.0.0.1 2.0.0.1 6322 12988

+ 68.437004 1 2 tcp 1020 ------- 2 0.0.0.1 2.0.0.1 6322 12988

- 68.437004 1 2 tcp 1020 ------- 2 0.0.0.1 2.0.0.1 6322 12988

r 68.43775 2 1 ack 60 ------- 2 1.0.1.2 0.0.0.0 6316 12996

+ 68.43775 1 0 ack 60 ------- 2 1.0.1.2 0.0.0.0 6316 12996

- 68.43775 1 0 ack 60 ------- 2 1.0.1.2 0.0.0.0 6316 12996

r 68.438564 4 2 ack 60 ------- 2 1.0.1.2 0.0.0.0 6317 12999

APPENDIX B

B.1 Source Code for Routers Lab Setup 

#!/bin/bash

# ################################################# 

#                                                                                                 #

# Top level script. Run this as “toplevel host” to run all tests   #

#                                                                                                 #

###################################################

echo "Running HA to FA1 to FA2, HA to FA1, and FA1 to FA2 tests!"

echo "Make sure that all wireless links are 1 Mbps and press enter when ready!"

read

./script.sh $1 1 60 | tee results1Mb

./hafa.sh $1 1 30 | tee hafa1Mb

./fa2fa.sh $1 1 30 | tee fa12fa21Mb

echo "Make sure that all wireless links are 5.5 Mbps and press enter when ready!"

read

./script.sh $1 5.5 60 | tee results5.5Mb

./hafa.sh $1 5.5 30 | tee hafa5.5Mb

./fa2fa.sh $1 5.5 30 | tee fa12fa5.5Mb

echo "Make sure that all wireless links are 11 Mbps and press enter when ready!"

read

./script.sh $1 11 60 | tee results11Mb

./hafa.sh $1 11 30 | tee hafa11Mb

./fa2fa.sh $1 11 30 | tee fa12fa11Mb

#!/usr/bin/expect --

###########################################################

#                                                                



#

#    FileName: brg1Mb.exp                                        


#

#    Expect script to set wireless brdige data rate to 1 Mbps    

#

#                                                                



#

###########################################################

set timeout 30

set prompt "(%|>|#|\\$:) $" ;

catch { set prompt $env(EXPECT_PROMPT) }

#set bw [lrange $argv 0 0]

set dly [lrange $argv 0 0]

set qlen [lrange $argv 1 1]

puts "Telnet into Rack7R7\r"

set tpid6 [spawn telnet 100.10.13.7]

expect "Password"

send "cisco\r"

expect ">"

send "en\r"

expect "Password"

send "cisco\r"

expect "#"

send "conf t\r"

expect "#"

send "int fa0/0\r"

send "delay "

send $dly

send "00"

send "\r"

expect "#"

send "hold "

send $qlen

send " in\r"

expect "#"

send "int fa0/1\r"

send "delay "

send $dly

send "00"

send "\r"

expect "#"

send "hold "

send $qlen

send " in\r"

expect "#"

send "int fa1/0\r"

send "delay "

send $dly

send "00"

send "\r"

expect "#"

send "hold "

send $qlen

send " in\r"

expect "#"

send "end\r"

exec kill -9 $tpid6

puts "Telnet into Rack6R7\r"

set tpid7 [spawn telnet 100.10.13.77]

expect "Password"

send "cisco\r"

expect ">"

send "en\r"

expect "Password"

send "cisco\r"

expect "#"

send "conf t\r"

expect "#"

send "int fa0/0\r"

send "delay "

send $dly

send "00"

send "\r"

expect "#"

send "hold "

send $qlen

send " in\r"

expect "#"

send "int fa0/1\r"

send "delay "

send $dly

send "00"

send "\r"

expect "#"

send "hold "

send $qlen

send " in\r"

expect "#"

send "int fa1/0\r"

send "delay "

send $dly

send "00"

send "\r"

expect "#"

send "hold "

send $qlen

send " in\r"

expect "#"

send "end\r"

exec kill -9 $tpid7

puts "Telnet into Rack7R2\r"

set tpid8 [spawn telnet 100.10.14.2]

expect "Password"

send "cisco\r"

expect ">"

send "en\r"

expect "Password"

send "cisco\r"

expect "#"

send "conf t\r"

expect "#"

send "int fa0/0\r"

send "delay "

send $dly

send "00"

send "\r"

expect "#"

send "hold "

send $qlen

send " in\r"

expect "#"

send "int fa0/1\r"

send "delay "

send $dly

send "00"

send "\r"

expect "#"

send "hold "

send $qlen

send " in\r"

expect "#"

send "end\r"

exec kill -9 $tpid8

puts "Telnet into Rack6R1\r"

set tpid9 [spawn telnet 100.10.16.11]

expect "Password"

send "cisco\r"

expect ">"

send "en\r"

expect "Password"

send "cisco\r"

expect "#"

send "conf t\r"

expect "#"

send "int e0/0\r"

send "delay "

send $dly

send "00"

send "\r"

expect "#"

send "hold "

send $qlen

send " in\r"

expect "#"

send "int e0/1\r"

send "delay "

send $dly

send "00"

send "\r"

expect "#"

send "hold "

send $qlen

send " in\r"

expect "#"

send "end\r"

exec kill -9 $tpid9

puts "Telnet into Rack7R1\r"

set tpid10 [spawn telnet 100.10.11.1]

expect "Password"

send "cisco\r"

expect ">"

send "en\r"

expect "Password"

send "cisco\r"

expect "#"

send "conf t\r"

expect "#"

send "int e0/0\r"

send "delay "

send $dly

send "00"

send "\r"

expect "#"

send "hold "

send $qlen

send " in\r"

expect "#"

send "int e0/1\r"

send "delay "

send $dly

send "00"

send "\r"

expect "#"

send "hold "

send $qlen

send " in\r"

expect "#"

send "end\r"

exec kill -9 $tpid10

#!/bin/bash

#
script.sh







#

#
moves the mobile node from home agent to foreign agent 1 

#

#
and then to foreign agent 2 





#

#
and calculates the parameter values.




#


dostuff ( )

{ 

 sleep 10

 echo "Moving to foriegn agent 2!"

 echo "fore1" | cat > /proc/aironet/eth0/SSID

# sleep 20

# echo "Moving to foreign agent 2!"

# echo "fore1" | cat > /proc/aironet/eth0/SSID

 while [ 1 ]

 do

 if ( ps | grep netperf > /dev/null )

 then 

 continue

 else

 break

 fi

 done

 echo "Returning to foreign agent1!"

 echo "fore" | cat > /proc/aironet/eth0/SSID

 sleep 10

 return 0;

 }

if test $# -lt 2 

then

 echo "Script invoke syntax: " $0 " IP_ADDRESS BANDWIDTH"

 echo "Try again with the correct command line"

 exit 1

fi

echo "fore" | cat > /proc/aironet/eth0/SSID

echo "Running test with BW/DLY/QLEN as " $2 " Mbps/2 ms/50"

./dly_qlen 2 50 > /dev/null

 ./tcp_rr_script $1 $3 

dostuff

echo "Running test with BW/DLY/QLEN as " $2 " Mbps/2 ms/100"

./dly_qlen 2 100 > /dev/null

./tcp_rr_script $1 $3 

dostuff

echo "Running script with BW/DLY/QLEN as " $2 " Mbps/2 ms/150"

./dly_qlen 2 150 > /dev/null

./tcp_rr_script $1 $3 

dostuff

echo "Running script with BW/DLY/QLEN as " $2 " Mbps/5 ms/50"

./dly_qlen 5 50 > /dev/null 

 ./tcp_rr_script $1 $3 

dostuff

echo "Running script with BW/DLY/QLEN as " $2 " Mbps/5 ms/100"

./dly_qlen 5 100 > /dev/null

 ./tcp_rr_script $1 $3 

dostuff

echo "Running script with BW/DLY/QLEN as " $2 " Mbps/5 ms/150"

./dly_qlen 5 150 > /dev/null

 ./tcp_rr_script $1 $3 

dostuff

echo "Running script with BW/DLY/QLEN as " $2 " Mbps/10 ms/50"

./dly_qlen 10 50 > /dev/null

 ./tcp_rr_script $1 $3 

dostuff

echo "Running script with BW/DLY/QLEN as " $2 " Mbps/10 ms/100"

./dly_qlen 10 100 > /dev/null 

 ./tcp_rr_script $1 $3 

dostuff

echo "Running script with BW/DLY/QLEN as " $2 " Mbps/10 ms/150"

./dly_qlen 10 150 > /dev/null

 ./tcp_rr_script $1 $3 

dostuff

#!/bin/bash

# 
hafa.sh




#

#  
home agent to foreign agent 1 tests

#

dostuff ( )

{ 

 sleep 10

 echo "Moving to foriegn agent 1!"

 echo "fore" | cat > /proc/aironet/eth0/SSID

# sleep 20

# echo "Moving to foreign agent 2!"

# echo "fore1" | cat > /proc/aironet/eth0/SSID

 while [ 1 ]

 do

 if ( ps | grep netperf > /dev/null )

 then 

 continue

 else

 break

 fi

 done

 echo "Returning to home agent!"

 echo "home" | cat > /proc/aironet/eth0/SSID

 sleep 10

 return 0;

 }

if test $# -lt 2 

then

 echo "Script invoke syntax: " $0 " IP_ADDRESS BANDWIDTH"

 echo "Try again with the correct command line"

 exit 1

fi

echo "Running test with BW/DLY/QLEN as " $2 " Mbps/2 ms/50"

./dly_qlen 2 50 > /dev/null

 ./tcp_rr_script $1 $3 

dostuff

echo "Running test with BW/DLY/QLEN as " $2 " Mbps/2 ms/100"

./dly_qlen 2 100 > /dev/null

./tcp_rr_script $1 $3 

dostuff

echo "Running script with BW/DLY/QLEN as " $2 " Mbps/2 ms/150"

./dly_qlen 2 150 > /dev/null

./tcp_rr_script $1 $3 

dostuff

echo "Running script with BW/DLY/QLEN as " $2 " Mbps/5 ms/50"

./dly_qlen 5 50 > /dev/null 

 ./tcp_rr_script $1 $3 

dostuff

echo "Running script with BW/DLY/QLEN as " $2 " Mbps/5 ms/100"

./dly_qlen 5 100 > /dev/null

 ./tcp_rr_script $1 $3 

dostuff

echo "Running script with BW/DLY/QLEN as " $2 " Mbps/5 ms/150"

./dly_qlen 5 150 > /dev/null

 ./tcp_rr_script $1 $3 

dostuff

echo "Running script with BW/DLY/QLEN as " $2 " Mbps/10 ms/50"

./dly_qlen 10 50 > /dev/null

 ./tcp_rr_script $1 $3 

dostuff

echo "Running script with BW/DLY/QLEN as " $2 " Mbps/10 ms/100"

./dly_qlen 10 100 > /dev/null 

 ./tcp_rr_script $1 $3 

dostuff

echo "Running script with BW/DLY/QLEN as " $2 " Mbps/10 ms/150"

./dly_qlen 10 150 > /dev/null

 ./tcp_rr_script $1 $3 

dostuff

#!/bin/bash

# 
fa2fa.sh




#

# 
foreign agent 1 to foreign agent 2 tests
#

dostuff ( )

{ 

 sleep 15

 echo "Moving to foriegn agent 1!"

 echo "fore" | cat > /proc/aironet/eth0/SSID

 sleep 20

 echo "Moving to foreign agent 2!"

 echo "fore1" | cat > /proc/aironet/eth0/SSID

 while [ 1 ]

 do

 if ( ps | grep netperf > /dev/null )

 then 

 continue

 else

 break

 fi

 done

 echo "Returning to home agent!"

 echo "home" | cat > /proc/aironet/eth0/SSID

 sleep 10

 return 0;

 }

if test $# -lt 2 

then

 echo "Script invoke syntax: " $0 " IP_ADDRESS BANDWIDTH"

 echo "Try again with the correct command line"

 exit 1

fi

echo "home" > /proc/aironet/eth0/SSID

echo "Running test with BW/DLY/QLEN as " $2 " Mbps/2 ms/50"

./dly_qlen 2 50 > /dev/null

 ./tcp_rr_script $1 $3 

dostuff

echo "Running test with BW/DLY/QLEN as " $2 " Mbps/2 ms/100"

./dly_qlen 2 100 > /dev/null

./tcp_rr_script $1 $3 

dostuff

echo "Running script with BW/DLY/QLEN as " $2 " Mbps/2 ms/150"

./dly_qlen 2 150 > /dev/null

./tcp_rr_script $1 $3 

dostuff

echo "Running script with BW/DLY/QLEN as " $2 " Mbps/5 ms/50"

./dly_qlen 5 50 > /dev/null 

 ./tcp_rr_script $1 $3 

dostuff

echo "Running script with BW/DLY/QLEN as " $2 " Mbps/5 ms/100"

./dly_qlen 5 100 > /dev/null

 ./tcp_rr_script $1 $3 

dostuff

echo "Running script with BW/DLY/QLEN as " $2 " Mbps/5 ms/150"

./dly_qlen 5 150 > /dev/null

 ./tcp_rr_script $1 $3 

dostuff

echo "Running script with BW/DLY/QLEN as " $2 " Mbps/10 ms/50"

./dly_qlen 10 50 > /dev/null

 ./tcp_rr_script $1 $3 

dostuff

echo "Running script with BW/DLY/QLEN as " $2 " Mbps/10 ms/100"

./dly_qlen 10 100 > /dev/null 

 ./tcp_rr_script $1 $3 

dostuff

echo "Running script with BW/DLY/QLEN as " $2 " Mbps/10 ms/150"

./dly_qlen 10 150 > /dev/null

 ./tcp_rr_script $1 $3 

dostuff

#!/bin/bash

./netperf -l $2 -H $1 -t TCP_RR -i 1,1 -I 99,5 -v 2 -- -r 1000,1000 -s 0 -S 0 & 

B.2 Configuration using mobile router as mobile node

HA#

interface Ethernet0/0

ip address 100.10.10.1 255.255.255.0

ip irdp

 ip irdp maxadvertinterval 30

 ip irdp minadvertinterval 10

 ip irdp holdtime 90

router mobile

ip mobile home-agent broadcast lifetime 36000

ip mobile mobile-network syed 100.10.10.0 255.255.255.0

ip mobile host 100.10.10.88 mobile-network syed interface e0/0

ip mobile secure host 100.10.10.88 spi 100 key ascii myha

router rip

ver 2

network 100.0.0.0

timers basic 5 10 15 20

redistribute mobile metric 1

FA1#

int fa0/0

ip add 100.10.15.2 255.255.255.0

 ip irdp

 ip irdp maxadvertinterval 30

 ip irdp minadvertinterval 10

 ip irdp holdtime 90

 ip mobile foreign-service

router mobile

ip mobile foreign-agent care-of fa0/1

router rip

ver 2

network 100.0.0.0

timers basic 5 10 15 20

FA2#

int e0/0

ip add 100.10.17.11 255.255.255.0

 ip irdp

 ip irdp maxadvertinterval 30

 ip irdp minadvertinterval 10

 ip irdp holdtime 90

 ip mobile foreign-service

router mobile

ip mobile foreign-agent care-of e0/1

router rip

ver 2

network 100.0.0.0

timers basic 5 10 15 20

MN#

int fa0/0

ip add 100.10.10.88 255.255.255.0

 ip mobile router-service roam

 ip mobile router-service solicit

router rip

ver 2

network 100.0.0.0

timers basic 5 10 15 20

router mobile

ip mobile secure home-agent 100.10.10.1 spi 100 key ascii myha

ip mobile mobile-router

address 100.10.10.88 255.255.255.0

home-agent 100.10.10.1

register retransmit initial 10 maximum 15 retry 10

register lifetime 36000

B3. Configuration using Laptop as mobile node

HA#

En

conf t

hostname HA

interface Ethernet0/0

ip address 100.10.10.1 255.255.255.0

ip irdp

ip irdp maxadvertinterval 30

ip irdp minadvertinterval 10

ip irdp holdtime 90

hold 100 in

hold 100 out

no fair-que

no shut

interface Ethernet0/1

ip address 100.10.11.1 255.255.255.0

hold 50 in

hold 50 out

no fair-que

no shut

exit

router mobile

exit

ip mobile home-agent broadcast lifetime 36000

ip mobile host 100.10.10.88 interface e0/0

ip mobile secure host 100.10.10.88 spi 100 key ascii 123456781234567812345678

router rip

ver 2

network 100.0.0.0

timers basic 5 10 15 20

redistribute mobile metric 1

no auto

end

wr m

FA1#

en

conf t

hostname FA1

interface fa0/1

ip address 100.10.14.2 255.255.255.0

hold 50 in

hold 50 out

no fair-que

no shut

int fa0/0

ip add 100.10.15.2 255.255.255.0

ip irdp

ip irdp maxadvertinterval 30

ip irdp minadvertinterval 10

ip irdp holdtime 90

ip mobile foreign-service

hold 100 in

hold 100 out

no fair-que

no shut

exit

router mobile

exit

ip mobile foreign-agent care-of fa0/1

router rip

ver 2

network 100.0.0.0

timers basic 5 10 15 20

no auto

end

wr m

R1#

en

conf t

hostname R1

int fa0/0

ip add 100.10.11.7 255.255.255.0

hold 50 in

hold 50 out

no fair-que

no shut

int fa0/1

ip add 100.10.12.7 255.255.255.0

hold 50 in

hold 50 out

no fair-que

no shut

int fa1/0

ip add 100.10.13.7 255.255.255.0

hold 50 in

hold 50 out

no fair-que

no shut

exit

access-list 1 deny host 100.10.18.8

access-list 1 permit any

router rip

ver 2

network 100.0.0.0

timers basic 5 10 15 20

distr 1 out rip

no auto

end

wr m

FA2#

en

conf t

hostname FA2

interface Ethernet0/1

ip address 100.10.16.11 255.255.255.0

hold 50 in

hold 50 out

no fair-que

no shut

int e0/0

ip add 100.10.17.11 255.255.255.0

ip irdp

ip irdp maxadvertinterval 30

ip irdp minadvertinterval 10

ip irdp holdtime 90

ip mobile foreign-service

hold 100 in

hold 100 out

no fair-que

no shut

exit

router mobile

exit

ip mobile foreign-agent care-of e0/1

router rip

ver 2

network 100.0.0.0

timers basic 5 10 15 20

distr 1 out rip

no auto

end

wr m

R2

en

conf t

hostname R2

int fa0/0

ip add 100.10.13.77 255.255.255.0

hold 50 in

hold 50 out

no fair-que

no shut

int fa0/1

ip add 100.10.16.77 255.255.255.0

hold 50 in

hold 50 out

no fair-que

no shut

int fa1/0

ip add 100.10.14.77 255.255.255.0

hold 50 in

hold 50 out

no fair-que

no shut

access-list 1 deny host 100.10.18.8

access-list 1 permit any

router rip

ver 2

net 100.0.0.0

distr 1 out rip

timers basic 5 10 15 20

no auto

end

wr m

B4. Sun Mobile IP Configuration 

#mipmn.conf

#start of file

version 1

# attribute value pairs

debuglevel 3

IDfreshnessSlack 300

agentSolicitThreshold 6

agentExpireThreshold 8

regLifetime 200

retransmissionPolicy 4 8 16

renewalPolicy 0.5 0.25 0.1

periodicInterval 5

# information about the mobile node's home network: home address,

# netmask and default router(s). If the keyword "discover" (without

# quotes is specified for the default router, the mobile node will

# attempt to discover a default router. However, this functionality

# is not yet available.

100.10.10.0 255.255.255.0 100.10.10.1

# number of home agent entries, more home agents can be dynamically

# discovered and used if a default entry is specified.

1

# Information for each home agent: home agent's address, and

# security parameters including SPI (Security Parameter Index),

# replay protection mechanism (0=NONE, 1=TIMESTAMPS, 2=NONCES),

# shared secret length (key length) and the key.

# In the following example, when talking to home agent

# 192.168.122.123, the mobile node uses SPI 257, NONCE-based

# replay protection and a 16 byte long key with each byte being

# 0x11 (i.e. hexadecimal 11). In addition, the mobile node can

# dynamically discover other home agents and for them it uses

# SPI 570, TIMESTAMP based replay protection, 16-byte key with

# each byte equal to 0x22 (i.e. decimal 34). The home agents

# should be configured to use the same set of security parameters

# as expected by the mobile node.

100.10.10.1 256 2 16 12345678123456781234567812345678

default 570 1 16 22222222222222222222222222222222

# (Optional) If you wish to use a mobile node in the presence of

# firewalls as described in ``Secure and Mobile Networking'' then

# you must provide additional information to help the mobile node

# distinguish between internal and external addresses. Currently,

# this configuration is very simple-minded. Only internal networks

# are specified as address/netmask pairs. If the mobile node

# acquires a colocated care-of address that does not belong to any

# of the address ranges specified as ``internal'', the mobile node

# will invoke a script called IPSecScript with three parameters:

# the first one is either ``on'' or ``off'' (without the quotes),

# the second is the interface name on which the colocated care-of

# address was discovered and the third is the care-of address

# itself.

#

#end of file
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Mobile Node:


 100.0.0.0/8 is variably subnetted, 3 subnets, 2 masks


M       100.10.15.2/32 [3/1] via 100.10.15.2, 00:00:17, FastEthernet0/0


C       100.10.10.0/24 is directly connected, FastEthernet0/0


C       100.10.18.0/24 is directly connected, FastEthernet0/1


M*   0.0.0.0/0 [3/1] via 100.10.15.2, 00:00:17, FastEthernet0/0


Home Agent:


 100.0.0.0/8 is variably subnetted, 9 subnets, 2 masks


M       100.10.10.88/32 [3/1] via 100.10.14.2, 00:00:45, Tunnel0


R       100.10.14.0/24 [120/2] via 100.10.11.7, 00:00:04, Ethernet0/1


R       100.10.15.0/24 [120/3] via 100.10.11.7, 00:00:04, Ethernet0/1








Mobile Tunnels:





Tunnel1:


    src 100.10.10.1, dest 100.10.10.88


    encap IP/IP, mode reverse-allowed, tunnel-users 1


    IP MTU 1460 bytes


    Path MTU Discovery, mtu: 0, ager: 10 mins, expires: never


    outbound interface Tunnel0


    HA  created, fast switching enabled, ICMP unreachable enabled


    0 packets input, 0 bytes, 0 drops


    0 packets output, 0 bytes


Tunnel0:


    src 100.10.10.1, dest 100.10.14.2


    encap IP/IP, mode reverse-allowed, tunnel-users 1


    IP MTU 1480 bytes


    Path MTU Discovery, mtu: 0, ager: 10 mins, expires: never


    outbound interface Ethernet0/1


    HA  created, fast switching enabled, ICMP unreachable enabled


    0 packets input, 0 bytes, 0 drops


    47 packets output, 9020 bytes
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HA#





interface Ethernet0/0


ip address 100.10.10.1 255.255.255.0


ip irdp


 ip irdp maxadvertinterval 30


 ip irdp minadvertinterval 10


 ip irdp holdtime 90


router mobile


ip mobile home-agent broadcast lifetime 36000


ip mobile host 100.10.10.88 interface e0/0


ip mobile secure host 100.10.10.88 spi 100 key hex  12345678123456781234567812345678


router rip


ver 2


network 100.0.0.0


timers basic 5 10 15 20


redistribute mobile metric 1
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