CHEMISTRY – A
TUTE – 1, G1
M.M. 10
Qu. 1) d2y/dx2 + 6dy/dx + 9y = 26e-3x + 5e2x
Qu. 2) d2y/dx2 + 4y = ex + sin2x
Qu. 3) d2y/dx2 + dy/dx – 2y = x + sin x
Qu. 4) Solve the following diff. eqn
y” – 2y’ + 2y = x + ex cos x
CHEMISTRY – A
TUTE – 1, G2
M.M. 10
Qu. 1) (D3 + 3D2 - 4) y = 12e-2x + 9ex
Qu. 2) (D3 + 2D2 + D) y = e2x + x2 +x
Qu. 3) (D2 – 2D + 2) y = x + ex cos x
Qu. 4) (D2 + 4) y = sin x
CHEMISTRY – A
TUTE – 2, G1
M.M. 10
Qu. 1) dy/dx + 2y tan x = sin x given that
y=0, where x = п/3
Qu. 2) Solve (x2y2 + xy +1) ydx + (x2y2 – xy +1) xdy = 0
Qu. 3) d2y/dx2 + 2dy/dx + 5y = e2x sin x
Qu. 4) Solve by the method of variation of parameter.
d2y/dx2 – y = 2/1+ ex
CHEMISTRY – A
TUTE – 2, G2
M.M. 10
Qu. 1) Solve (1+ ex/y) dx + ex/y (1 – x/y) dy = 0
Qu. 2) Solve x2 dy/dx = y (x + y)/2
Qu. 3) Solve d2y/dx2 – 6dy/dx + 13y = 8(e3x sin2x)
Qu. 4) d2y/dx2 + y = sec x
ECE – IVth SEM
TUTE – 1 (G1 & G2)
M.M. 10
Qu. 1) Maximize
Z = 2x1 + x2 +3x3
S. T.
X1 + x2 + 2x3 ≤ 5
2x1 + 3x2 + 4x3 = 12
x1, x2, x3 ≥ 0
Qu. 2) Solve the following Assignment problem
A B C D E F
1 13 13 16 23 19 9
2 11 19 26 16 17 18
3 12 11 4 9 6 10
4 7 15 9 14 14 13
5 9 13 12 8 14 11