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ABSTRACT

This paper demonstrates data mining applied to continuous image streams from staring sensors. The ultimate target of the project is intrusion detection in non-static camouflaged scenes. A brief explanation of the method’s underlying mathematics is provided along with references offering greater detail on its composition and development. This method is spectrum independent and does not depend on correlated pixels to achieve accurate signal extraction in high-noise environments.

INTRODUCTION

Analyzing sensor data is an increasingly complex activity due to four major factors: 

1. improvements in sensor sampling rates, resolution, and sensitivity

2. expanding data volumes are creating a progressive analysis backlog

3. the number and types of signals to capture and analyze is growing

4. new signals of interest are more difficult to detect and identify


These factors create a situation where it is necessary to continue exploring new ways to automate signal analysis. This paper describes a means of event detection in situations where the signal of interest might otherwise remain obscured and undiscovered. We accomplished this detection by starting with the seminal work of Sanner and Slotine in control theory and applying their foundation to the real-time signal processing domain. Ideas from data mining were used to unify the effort. The result is a grid of basis function neural networks that provide a means of predicting the next frame in an image stream, revealing unpredicted events, and thereby postulating an intruder within the scene.

With strong potential to support this activity, Data mining is an important technology that is proving its value and practicality in many domains. It is a means of analyzing masses of data to derive information that is not obtainable via traditional methods. While the world’s volume of data continues to grow, data mining techniques enable processes that get the best value from the data in real-time (fast enough to permit a meaningful response to the system being measured). Figure 1 is a notional architecture that uses data mining to generate control actions in a human-centered process. We used these processes to support enhanced event detection. 
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It is our contention that data mining performed solely post-collection can not have a real-time impact on highly dynamic processes. For a real-time impact to be made, data mining must be performed as the data is being collected. In the end, there are two major opportunities for data mining: real-time during collection so that the system can be modified immediately, and post-collection so that the system can be improved on a more fundamental scale. To address these opportunities for sensor data analysis, we chose an application that delivers a continuous image stream at a minimum rate of 30   640 x 480 pixel frames per second. The approach employs a grid of adaptive basis function networks that model the spectrum-independent image stream so that the sequence of pixel values can be predicted. 

BACKGROUND AND SIGNIFICANCE


Our effort started with the seminal work of Sanner and Slotine in control theory. We developed an adaptive detection threshold that predicts the next frame in a sequence of pixilated “scenes”. When the next frame contains data not predicted, the method postulates the existence and location of an obscured intruder. This technique does not depend on a given spectrum, nor does it depend on correlated pixels.


The adaptive model used is composed of a network of independent Gaussian radial basis functions. The form of the Gaussian employed is similar to that used for classification, although the constructive technique is much different and the outputs are interpreted for analog rather than binary application. (See Raeth, Gustafson, and Little.) Each pixel in the sensor has its own model. Each model is built automatically from sequential observations of the incoming image frames. As the model is being built, it gradually becomes able to predict the next frame in the sequence. Once model construction is completed, it continues to evolve as new frames arrive. Pixels with a detected intruder stop evolving until the intruder is no longer present. In this way, the intruder does not become part of the frame prediction. This allows its presence to be tracked across pixels and thus provides a type of moving target indicator. A notional architecture employing this model is shown in Figure 2. It is a specific application of the architecture in Figure 1.
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As a beginning, we trained the model to predict  xt = Cxt-1(1.0 - xt-1). According to Hilborn [p26], this equation is chaotic when 3.6 <= C < 4.0  and  0.0 < x0 < 1.0. (C is a constant, x0 is the first value of x, xt-1 is the previous value of x, and xt is the newly computed value of x.) After 1900 samples, the mean relative error was steady at 5%.


After establishing the model’s performance, we simulated a sequence of frames from a 10x10 region of a camera’s field of view, including jitter. (The company’s proprietary camera simulator was used to generate the sequence of frames .)  Each of the 100 pixels in this view had a model composed of 800 basis functions. Each model was built automatically from observations of the incoming frames. All construction and exercising of the models took place on a common desktop PC. During construction, the models cycled through 75 sequential frames. (Normally, a continuous image stream would be used but this limited sequence is sufficient to demonstrate the technique’s ability.) Construction took 1 hour and 15 minutes and went through 100 cycles of all 75 frames. When the intruder entered the scene, it was always detected. There was a brief false alarm but it covered only one pixel and lasted only ten frames out of 75.


The model detects intruders by using three measures of departure from the expected:

1. the number of sequential times the departure appears

2. the number of sequential times the departure subsequently disappears

3. the % difference between the actual and expected sample

METHODOLOGY


Basis functions are simple-equation building blocks that are a proven means of modeling more complex functions. Brown (in the book edited by Light, p203-206) showed that if D is a compact subset of the k-dimensional region Rk, then every continuous real-valued function on D can be uniformly approximated by linear combinations of radial basis functions with centers in D. Proofs of this type have also been shown by Funahashi; Girosi & Poggio; and Hornik, Stinchcombe, & White. The theory thus having already been well established, the following exposition will concentrate on implementation. The terms “node” and “point” are used interchangeably to refer to a location in the space Rk. Our intended application has k = 1, a one-dimensional value at a given time such that Rk is a line. Look to Sanner and Slotine for an expansion to larger dimensions. This explanation interprets their work for one dimension.


At the top level, complex functions can be approximated using the following summation:
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(1)
f(x) approximates function F(x) at point x in region Rk
(i is the center or location of node i in region Rk

gi is the nonlinear function used by node i and is

   centered at (i
ci is the weight by which the output of gi is multiplied 

n is the number of nodes


The idea is to pick a number of points in Rk. Then chose a function that will be used whenever a given point is referenced. Finally, set the output weight for each function, and then add up the results of those functions at input point x. The interesting part, of course, is how to carry out each of those steps.


For this modeling technique, a gaussian radial basis function is used at each point. This function is nonlinear, continuous, and has infinite support.
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(2)
|| x - (i ||2 = (x - (i) (x - (i)

(i2 is the variance at node i (gaussian width)


Picking the points, (i, in Rk is a matter of deciding how large the model is to be. For each point, another basis function has to be employed. Note that making the model too large is as ineffective as making it too small. For k = 1, the (i lie spaced evenly along a line segment formed by the range of expected values of f(x) ( [f(x)min, f(x)max] plus a zone ( = some constant. The distance between points is ( <= 1/(2(). ( > 0 is less than the maximum frequency component (in the FFT sense) used to estimate F(x). Thus, the higher the meaningful frequency content, the more node points are needed. Judgement has to be used here. One does not want to attempt to model the high-frequency “noise”, just capture the meaningful parts of the signal. On the other hand, if the scene is truly very robust, a sufficiently large number nodes are needed to resolve the components. We have found that choosing the number of nodes to use is not a delicate affair.


For small k, a good rule of thumb uses (i2 = ((2, making the variance the same constant for all node points. Another good rule of thumb has (2 = 1/(8(2). Our empirical approach has been to choose a number of nodes and calculate the other values from there. As our technique improves, our means of choosing the number of nodes should also improve.
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The final point is how to initialize and evolve the output weights. Let f(x)t be the function approximation due to sample x received at time t. 
(3)
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Updating the output weight, ci[t-1], due to f(x)t yields cit.
(4)


We have found it best to initialize all ci[t = 0] to a constant between 0 and 1, non-inclusive. (This range was chosen via experiment.) Now let (t = (f(x)t – F(x)t). This is the prediction error, the difference between the estimated function result and the actual function result. The estimation is performed before the arrival of the actual result.
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(5)
sat(z) = z if |z| <= 1 and sgn(z) otherwise 

sgn(z) = -1 if z < 0 and +1 otherwise

( is the minimum expected error


What this formula says is that the network’s output weights are not updated if the prediction error is less than the minimum expected error. Intruder’s are postulated when the system is in operational mode and the prediction error is sufficiently large.
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(6)
Kt is the adaptation gain. The theory requires G < 2. Empirically, we have found that G = 0.1 works well. Kt must always be positive.

ISSUES


This method is an emerging technology. The following issues should be considered:

· Does the environment contain significant random components such that forward prediction of essential elements is not possible? 


· Does the environment evolve slowly enough that achievable sampling rates are sufficient for an effective model to be built?


· Can the model’s accuracy be maintained in natural scenes?


· Can the processing be performed fast enough to enable timely response?

SUMMARY


This paper has discussed the first results of a project that combines ideas from data mining, control theory, and image processing to filter continuous image streams. Since the filtering is done on a pixel-by-pixel basis, correlated pixels are not required but can yield additional detection capability. Further, the technique makes no assumptions about the spectra from which the “images” are drawn. The general query made by the resulting system is: “What is out there that is unexpected?” The unexpected is postulated as an intruder. There is much work to be done with the method, but a satisfying first success has been achieved using an image segment drawn from a proprietary camera simulator. A 

report and demonstration are available at http://www.geocities.com/siliconvalley/lakes/6007/Databases.htm.
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