Introduction to Floating point calculations and
[EEE 754 standard

Jamil Khatib

August 10, 2000

1 Introduction

Floating Point is a representation of real (fractional) numbers. In this repre-
sentation the location of the fractional point can be moved from one location
to another according to the precision. “thats where the name came from”.
It takes the general format as
Exp. 0. Fraction

Although these numbers solve many problems of integers, it has its own
problems and considerations. This is because the resources available for stor-
ing these numbers are limited and so we can not represent infinite number of
digits and not like real life numbers and calculations. Rounding method and
order of calculations are few considerations of floating number calculations.

2 Introduction to IEEE-754 standard

In the early days of computers, vendors start developing their own repre-
sentations and methods of calculations. These different approaches lead to
different results in calculations. So the IEEE organization defined in the
IEEE-754 standard a representation of the floating point numbers and the
operations.

3 Representation

e Representation As in all floating point representations, the IEEE
representation divides the number of bits into three groups, the expo-
nent and the fractional part.

e Fractional numbers are represented as sign-magnitude which needs
a reserved bit for the sign.

e The exponent is based on the biased representation. Which means
if k is the value of the exponent bits, then the exponent of the floating

point number is k—the bias. So to represent the exponent zero the
bits should hold the value of the bias.

e Hidden-bit Another feature of the IEEE representation the is the
hidden bit. This bit is the only bit to the left of the fraction point.
this bit is assumed to be 1 which gives an extra bit of storage in the
representation in increases the precision.

Single | Single-Extended | Double | Double-Extended | Quad-Precision
Exponent(max) | +127 1023 +1023 +16383 +16383
Exponent(min) -126 1022 -1022 -16382 -16382
Exponent Bias +127 +1023 +1023 +16383 +16383
Precision(#bits) | 24 >32 53 >64 113
Total Bits 32 >43 64 80 128
Sign bits 1 1 1 1 1
Exp Bits 8 11 11 15 15
Fraction 23 >32 52 64 112
Precision

Precisions The IEEE-754 defines set of precisions which depends on
the number of bits used. There are two main precisions, the single and
the double “the quad-precision is not used often”.

Extended The standard also define an extended precision for both
standard precisions. The number of used bits is enlarged. The stan-
dard defines the minimum number of bits of the extended format. and
its up to the implementer to increase it. The IEEE standard requires
that the implementation should support the corresponding extended
format.

Reason The main reason for extended format came from calculators
which displays 10 digits but use 13 digits internally, which makes the
user feel as if the calculator computes to 10 digits accuracy[1]. This
feature is important to make all calculations on all IEEE-754 platforms
give the same results after rounding. It is also needed to distinguish
between exact and inexact results.

Note: The standard requires that all calculations are made in ex-
tended format and then rounded to the precision. It is important to
round the extended result of each operation alone to the corresponding
precision. Because if it is not done the final result will depend on the
extra bits and produce and unexpected results.

5 Normalization

Normalization is the act of shifting the fractional part in order to
make the left bit of the fractional point is one. During this shift the
exponent is incremented.

Normalized numbers are the numbers that have their MSB 1 is in
the most left bit of the fractional part.

Denormalized numbers are the opposite of the normalized numbers.
(i.e. the MSB 1 is not in the most left bit of the fractional part).

Operations: Some operations requires that the exponent field is the
same for all operands (like addition). In this case one of the operands
should be denormalized.

Importance: Denormalized numbers have important use in some op-
erations and numbers. For example[l], assume minimum exponent is
-98, and number of digits is 3 and to perform the operation z — y
where z = 6.87 x 107°7 and y = 6.81 x 1077, The result of this oper-
ation is 0.06 x 10~°7 if This number is normalized in decimal it will be
6.00 x 10™%9 which is too small to be represented as a normalized num-
ber in so it is normalized to zero. but if the result is not normalized
we will get the correct result.

Gradual underflow: One of the advantages of the denormalized
numbers is the gradual underflow. This came from the fact the nor-
malized numbers can represent minimum numbers is 1.0 x 27" and
all numbers smaller than that are rounded to zero (which means there
are no numbers between 1.0 x 2™ and 0 . The denormalized numbers
expands the range and gives gradual underflow through the division of
the range between 1.0 x 2™" to (0 with the same steps as the normalized
numbers . For more information refer to [1] [2] [3]

6 Special values

The TEEE-754 standard supports some special values that gives special func-
tions and give some signals.
Table of Special values

Name Exponent Fraction | sign | Exp Bits | Fract Bits
+0 min — 1 = + | All zeros | All Zeros
-0 min — 1 = — | All zeros | All Zeros

Number | min < e < mazx any any | Any Any
400 mazx + 1 = + | All ones | All zeros
—00 mazx + 1 =0 — | All ones | All zeros
NaN maz + 1 #0 any | All ones | Any

6.1

6.2

Zero

The zero is represented as a signed zero (—0 and +0)
it is represented as min — 1 in the exponent and zero in the fraction.

The signed zero is important for operations that preserves the sign like
multiplication and division. It is also important to generate 4+oc or
—00

It is also used in the signum function that return the sign of a number.

Event hough the standard defines the comparison —0 = +0 as true.

NalN

Some computations generate undefined results like 0/0 and /—1. These
operations should be handled or we will get strange results and behayv-
ior. NaN is defined to be generated upon these operations and so the
operations are defined for it to let the computations continue.

Whenever a NaN participates in any operation the result is NaN.

There is a family of NaN according to the above table and so the
Implementations are free to put any information in the fraction part.

All comparison operators (=, <, <, >, >) (except (#)should return false
when NaN is one of its operands.

Sources of NaN

Operation Produced by

REM TREMO0,00REMy
Y Vz(whenz < 0)

+ 00 + (—00)
X 0 x oo
/ 0/0,00/00

6.3

Infinity

e The infinity is like the NaN, it is a way to continue the computation

when some operations are occurred.

e Generation Infinity is generated upon operations like /0 where = #

0

e Results: The results of operations that get oo as parameter is defined

as: "Replace the oo by the limit lim;_, . For example 3/o00 = 0
because limg_,03/z = 0 and /oo = 0o and 4 — 00 = —00

The infinity is used instead of the saturation on maximum repre-
sentable number and the computation should continue.

Example[1]: compute \/z2 + y? when max exponent is 98 and only
three decimal digits are supported. If z = 3x 107 and y = 4x107° and
saturation is used 2 = 9.99 x 10% and so y?. and so the final result it
(9.99 x 10%8)1/2 = 3.16 x 10* which is different than the correct result
(5 x 10™). Instead when Infinity is used, 2 = oo and y? = oo so the
final result is oo which is much better than giving incorrect result.

7 Exceptions

Exceptions are important factors in the standard to signal the system
about some operations and results.

when an exception occurs, a status flag is set.

The implementation should provide the users with a way to read and
write the status flags.

The Flags are “sticky” which means once a flag is set it remains until
its explicitly cleared.

The implementation should give the ability to install trap handlers
that can be called upon exceptions.

Overflow, underflow and division by zero are obvious from the
table below. The distinction between Overflow and division by zero is
to give the ability to distinguish between the source of the infinity in
the result.

Invalid This exception is generated upon operations that generates
NaN results. But this is not a reversible relation (i.e. if the out put is
NaN because one of the inputs is NaN this exception will not raise).

Inexact It is raised when the result is not exact because the result
can not be represented in the used precision and rounding cannot give
the exact result.

Software flags The inexact result exception is raised so often. So
some implementations suggests that the hardware generates interrupts
upon exceptions, while the software keeps the sticky status flags. In
this case once an exception occurs, an interrupt is signaled to the
software and the flag is set and that interrupt is masked. Once the
flag is unset the interrupt is unmasked again.

Exceptions in IEEE 754 standard

Exception Cased by Result

Overflow Operation produce large number | oo

Underflow Operation produce small number | 0

Divide by Zero | z/0 +oo

Invalid Undefined Operations NaN

Inexact Not exact results Round(x)
8 Rounding modes

The standard requires the following rounding modes: Round toward
nearest, Round to zero, Round to +o00, Round to —oo.

There are three types of round to nearest according to the standard
Round to nearest even
Round half-integers away from 0

Truncate to integers towards 0

9 Comparison
e The standard requires the comparison to be exact (i.e. no overflow
nor underflow)
e Four relations should be implemented: equal,less than, greater than,
unordered
e the sign of zero should be ignored
e comparisons involving NaN should produce "unordered’
References
[1] What every computer scientist should know about Floating-Point arith-
metic. by David Glodberg. “http://www.”
[2] Lectures notes on the Status of IEEE standard 754 for Binary Floating-
Point Arithmetic. “http://www.”
3] An Interview with the Old Man of Floating-Point.

“http://www.cs.berkeley.edu/ wkahan/ieee754status/754story.html”

