FIFO, First-In First-Out Memory

Jamil Khatib

March 28, 1999

1 Top level design:

The First-In First-Out Memory stores the data in queue order so the first
input element goes out the first.

1.1 Design Approach:

My design depends on the use of dual port memory and generation of both
read and write pointers as the addresses for each port.

Depending on this approach my system is divided into four functional
blocks as shown in figure 1. This division can be used by almost all other
approaches that I am going to discuss two of them later.

—-
Storage Core
Contral =
Input A =
= Address
Generaior
=
Flags Generator
—-

Figure 1: System Block Diagram



1.2 Interface:

‘ Signal Name

Signal Type ‘

Description

‘ Notes

RE
WE

FULL

DATA_IN[7:0]
DATA[7:0]

SYSCLK
RESET
HALF_FULL

EMPTY

input bus
output bus
input
input
input
input
output
output
output

input data to be stored

output data

read enable signal

write enable signal

system global clock

system global reset

half full signal

full signal no further write attempts are enabled
Empty signal no further read attempts are enabled

Active High
Active High

Active Low
Active high
Active High
Active High

2 Controller Block:

The controller part determines and generates the valid read and write sig-
nals depending on both the flags and the system read and write requests.

RE EMPTY | RE.MEM
0 0 0
0 1 0
1 0 1
1 1 0
Table 1: Read Operation truth table
WE FULL | WE_MEM
0 0 0
0 1 0
1 0 1
1 1 0

Table 2: Write Operation truth table

3 Address generation Block:

This block generates both pointers to the next address to be read and to be

written.




3.1 Interface:

‘ Signal Name ‘ Signal Type ‘ Description ‘ Notes
CLK input system global clock
RESET input system global reset | Active Low
RE input read enable signal | Active High
WE input write enable signal | Active High
W_ADDR[7:0] | output bus | The Write pointer
R_ADDR[7:0] | output bus | The Read pointer

3.2 Implementation:

e The block is simply implemented of two 8-bit synchronous counters.

e The outputs of these two counters represent the two pointers.

e The CE chip enable pins are connected to both the write and read
enable that are synchronized with the system read and write requests.
These lines should be enabled only on valid read or valid write actions.

So external logic should control these lines.

e result the clock goes infnitly to the counters but the count up is per-

formed only upon read and write requests.

e clear pins are connected to the global Reset signal.

4 Dual port memory block:

This block is the storage core of the FIFO.

4.1 Interface:

‘ Signal Name ‘ Signal Type ‘

Description

‘ Notes

CLK input
RESET input
RE_MEM | input
WE_MEM | input
WA[7:0] input bus
RA[7:0] input bus
DIN[7:0] input bus
DOUT[7:0] | output bus

system global clock
system global reset
read enable signal
write enable signal
The Write address
The Read address
The input data
The output data.

Active Low
Active High
Active High

4.2 Implementation:

e The memory block is generated by the LogiBlox tool. This block is a
single and dual port memory with Write enable synchronized to the

block clock.




The write operation to the first port is done for each rising edge
of the write clock at the address specified for WA[7:0] when The
WE_MEM is active.

The read operation is not synchronized “Asynchronous read” with the

clock and it produces the output data for each input read address
RA[7:0]

A 3-state buffer is located at the output of the Dual port output in
order to enable and disable the output of the FIFO.

A Flip-Flop with its input connected to the inverted RE_MEM input
is to synchronize the Read operation with the block clock and to make
it active high signal the same as the write operation since the control
of the tri-state buffer is active low.

A synchronous register is added at the input to synchronize the asyn-
chronous input data to be written.

A delay Flip-Flop is added at the between the external WE_MEM
input and the WR_EN pin is to synchronize the write command with
the input data from the register.

5 The Flags Block:

This block is one of the most problematic blocks. This block generates the
required flags that control and validate the read and write signals. It gener-
ates three signals, the FULL signal, which indicates that the FIFO is Full
and so no further write operation should be attempted. The HALF_FULL
signal which is just an indication that Half the FIFO is full or empty. Finally
the EMPTY signal that indicates that the FIFO is empty and no further
read operation should be attempted unless a single byte is written to the

FIFO.

5.1 Interface:

‘ Signal Name

Signal Type ‘

Description

Notes ‘

CLK input system global clock

RESET input system global reset | Active Low
RE input read enable signal | Active High
WE input write enable signal | Active High
FULL output Full flag active high

HALF_FULL | output half full flag active high

EMPTY output empty flag active high




5.2 Implementation:

e The main goal of this block is to check both the read and write pointers
if they are close together and by how much. If the difference between
them is zero, then the FIFO is either Full or Empty. To determine if
its full or empty the previous state of the pointers must be checked.

Instead of implementing this idea as is, I decided to use another pointer
or indicator that is incremented for each write operation and decre-
mented for each read operation. When this pointer is zero, the FIFO is
empty. When the pointer points to the highest address in the memory
it means that the FIFO is full.

Regarding this approach, I used an 8-bit count up/down counter to
represent this pointer.

This counter counts up for valid Write operations

It counts down for valid read operations

When there are valid read and write signals at the same time, neither
count up nor count down should be done. The same as if there are no
valid signals at the input.

This simple arbitration is controlled using the CE “Chip Enable” and
UP “count UP” pins. The truth table of these functions are described
in tables 3 and 4.

RE WE | CE

0 0 0

0 1 1

1 0 1

1 1 0

Table 3: Arbiter truth table

RE WE | UP

0 0 X

0 1 1

1 0 0

1 1 X

Table 4: Count direction truth table
So UP=WE



e Signal generation:
FULL signal: is generated when all lines of the counter are '1’s.
HALF_FULL signal: is generated when the MSB bit of the counter
is 1.
EMPTY signal: is generated when all lines of the counter are ’0’s.

Read Pointer

Write Pointer

Figure 2: Read and write Pinters Block Diagram

6 Improvements and other approaches:

The Flag generation block can be implemented differently by comparing
both the Read and Write addresses without adding the Extra counter.
In this way the size of the system will decrease.

Another way of implementing the memory core is by using a single port
memory and make an arbitration between the read and write opera-
tion. This approach will decrease the system size specially for FPGAs
and it also decreases the speed of the system.

Array of shift registers can be used to implement the memory core block
while a controller is used to control the shift operation. So the input
data goes to the first register while the output data goes from the last
register. The input data should be shifted down to the last empty
register.

The controller can be implemented with self-timed design technique which
make the system much faster.



