AFSPG: An Automatic Faulty SPICE Program Generation
System*

Kuen-Jone Lee,Cheng-Yi Hwang
Department of Electrical Engineering
National Cheng-Kung University
Tainan, Taiwan, R.O.C.

Abstract

In this paper, we present the AFSPG: an Automatic
Faulty SPICE Program Generation System, which can
help the user to insert any fault into a SPICE Program
such that information of faulty circuit simulation can be
easily collected to help later fault analysis and diagnosis.
Unlike previous work that can only model single short or
break faults, we replace each faulty component by a sub-
circuit and hence great flexibility is achieved. The user
can either uses the default fault models provided in our
faulty component library or defines his own fault models.
The system also provides a user-friendly, window-based
interface and can be easily integrated with any other
fault analysis/diagnosis system.

1 Introduction

Analog PC boards are widely used in military systems
and some large scale mechanical and electrical equip-
ment such as the rapid transportation systems. These
boards are usually very expensive. If some components
or ICs on a PC board fails, it is necessary to find out
these faulty components, and replace them with good
components in a cost-effective mothod. Traditionally,
the solution to fix up a PC board is based on a brute-
force method, i.e., replacing each component on the PC
board with a good component one by one to find out
which faulty component is causing the problem. This
kind of approach is quite time consuming and usually
require extensive experience.

To minimize the fixing time of an analog PC board,
some previous work has tried to analyze the faulty
circuits in a prior and establish a so-called diagnosis
database in which the relations between the faulty com-
ponents and the fault syndrome are recorded, usually in
a tree structure[5]. With this database the fault diag-
nosis process can be simplified to a tree search problem.

To built the database, it is critical to implement a
simulation system that can help the user to find the ef-
fects of any possible fault. Since SPICE is currently the
industry standard tool for circuit simulation, it becomes

*This work was supported by the Institute for Information In-
dustry under contract number 87R51.

Ying-Kun Tsao
Avionics Development Center

Institute for Information Industry
Taipei, Taiwan, R.O.C

clear that we need a system that can generate a faulty
SPICE program based on any required fault model.

Such a concept is not new. In fact, recently a com-
mercial product, named IsSpice which is a SPICE sim-
ulator, has implemented a fault insertion function into
its system [1]. By the way of its integrated system in-
cluding SPICE simulator and fault insertion function,
designers can insert faults and obtain the response in-
formation of the faulty circuit easily. However in [1],
only two simple fault models are defined, namely short
and break. Hence for some faults that cannot be ade-
quately described by simple short or break, the system
will have some difficulty in producing an appropriate
faulty SPICE program.

In this paper, we shall describe this problem in de-
tail in Section 2 and then propose a novel method to
handle this problem. Based on this method we have im-
plemented a fault generation system called the AFSPG,
an Automatic Faulty Spice Program Generation System.
This window-based system allows the user to generate a
faulty SPICE program with any possible fault through
a user-friendly interface. It also provides a faulty com-
ponent database through which the user can either uses
the default fault models or define his own fault model-
s. At the end of this paper, we list the default faulty
components [3][4] in our database which are based on
the failure modes defined in the Consolidated Automat-
ed Support System (CASS) proposed by the American
Navy [6] .

2 Faulty Component Generation

In [1], only the faults defined on the connection of a
component, i.e. open or short, are taken into consid-
eration. It uses the following general method to generate
the faulty components. If a component has a short
fault between its nodes A and B, a small resistor
will be cascoded with this component between
nodes A and B, and if a component has an open
fault at its node A, a huge resistor between node
A and this component will be inserted. Figure 1
shows these two fault models.

For most cases, this method will work well. How-
ever, if one wants to model the faults inside the compo-
nents or define his own fault model, this method become

A :
Original Component

o e ot

Huge Resistor

(a)Short Fault

(b)Open Fault

Figure 1: Faulty Components defined in [1].

inadequate. Next we use a BJT to illustrate this pro-
belm.

\\\\\\

Input

\\\\\

135
oo TSoM oM o
Tim

Figure 2: Sample circuit and its simulation result. The
upper wave is output and the lower wave is input.

When a BJT has an BE open fault, there will be
at least three possible cases: 1) The connection of the
base node in the BJT is broken. 2) The connection of
the emitter node in the BJT is broken. 3) The junc-
tion between the base and the emitter nodes in the BJT
is broken. Clearly the mothod in [1] cannot handle all
these three cases because a single break fault model is
used. Though one may argue that Case 1 and Case 2 can
be handled by defining the breaks on the base and emit-
ter nodes, respectively, similar method, however cannot
correctly handle the third case, which is an fault de-
fined inside the component. In Figure 3, we show the
circuit generated by [1] after inserting a BE Open fault.
It actually inserts a huge resistor to the base node and
another to the emitter node of a BJT, hence causing
both the BE Open fault and BC Open fault. The simu-
lation result shows that the output is fixed at the power
supply voltage. However, since a BJT is composed of
two opposite diodes[2]: BE junction and BC junction,
if only the BE junction is broken, the BJT should act
like a diode (BC junction). Consequently, in the third
case, BC Open fault should not appear, and the faulty
circuit in Figure 3 is not appropriate.

To model this fault correctly, we can use a new
faulty component as shown in Figure 4. We can cascode
a small resistor with BE nodes to make BE short, which
eliminates the effect of BE junction, and insert a huge
resistor between the node E of Q1 and R2 to make BE
open. The simulation results of our faulty component
is given at the right side of Figure 4, which shows that
this faulty component actually acts like a diode.

From the above discussion, it is obvious that using
only a simple short or break model to generate fault-
y components for all kinds of fault free components

R1 10,0002
Input Output
oo

Tow moM s
TIME

Figure 3: Fault model for BE open fault defined in [1]
and its simulation result.

Input Output

5o
TIME

Figure 4: Our faulty component for BE open fault and
its simulation result.

will have some difficulty in producing appropriate fault-
y SPICE programs. In this work, we propose a novel
method to overcome this problem. Our basic idea is very
simple: using a sub-circuit, i.e., the .SUBCKT construct
defined in SPICE, to define a faulty component and re-
place a fault free component with this .SUBCKT. More
formally, we use a sub-circuit to encapsulate a faulty
component into a formal format. We define a faulty
component template format as shown in Figure 5
to encapsulate any faulty component.

.SUBCKT FaultyComponentName [node list]
FaultFreeComponentName [node list] <org>
HHHBHEHEHEBEE

Editable Region

HHHBHEHEHEBEE

.ENDS

Figure 5: Faulty component template format.

In this format, [node 1list] contains the nodes in
the original fault free component. <org> is a field to
keep the parameters of the original component so that
the faulty component can inherit its original properties
defined by these parameters. The important of this ar-
rangement will become clear through the following ex-
ample. The editable region can be edited by the user so
that he can create his own faulty component templates
according to his own fault model.

For example, assume a user wants to insert an open
fault into the capacitor C1 in the simple RLC circuit
shown in Figure 6. He can define the COpen faulty
component template as shown in Figure 7. According
to this template, our generation insertion function can
generate a faulty component by replacing the <org> tag

with the parameters of the original capacitor. After the
faulty component is generated, the insertion function
will replace “C1 3 0 1.0824NF” in the original circuit
with “X_AFSPG1 3 O COpenl”, and append the gener-
ated faulty component at the end of circuit, as shown
in Figure 8, where the parameter 1.0824NF appears in
the first component of the .SUBCKT structure. Clear-
ly with our method, any fault model can be defined
in the sub-circuit structure, no matter how complex it
is. For example, one may replace a transistor with it-
s small-signal analysis model with some components of
this model modified or some new components added to
model any fault. Since all the modifications are made
in the sub-circuit, one need not worry about whether
any new component will cause any conflict in naming or
numbering a new node or new component.

Simple RLC Circuit

.AC DEC 20 100 100meg

.TRAN .5u 50u

.PZ 2 0 4 0 VOL PZ

C1 3 0 1.0824NF

C2 40 1.5307NF

R1 1 2 10HM L1 2 3 .38268UH
L2 3 4 1.5772UH

V1l 10 AC=1 PWL O0S OV 1US OV 2US 1V 20US 1V 20.1US OV

.END

Figure 6: Sample faulty-free SPICE program

.SUBCKT COpen 1 2
Cl1 1 3 <org>

R1 2 3 1E8

.ENDS

Figure 7: COpen faulty component template

Simple RLC Circuit

.AC DEC 20 100 100meg

.TRAN .5u 50u

.PZ 2 0 4 0 VOL PZ

X_AFSPG1 3 0 COpenl

C2 40 1.5307NF

R1 1 2 10HM L1 2 3 .38268UH
L2 3 4 1.5772UH

V1 10 AC=1 PWL OS OV 1US OV 2US 1V 20US 1V 20.1US OV

#####Fault Module Added By Afspg System######
.SUBCKT COpenl 1 2

C1 1 3 1.0824NF

R1 3 2 1E6

.ENDS

.END

Figure 8: Sample faulty SPICE Program

3 Implementation

3.1 AFSPG System Architecture

We have implemented a window-based integrated fault
insertion system, called the Automatic Faulty SPICE

Program Generation system (AFSPG) . Its functional
blocks are shown in Figure 9 and the function of each
block is described below.

Fault-Free
SPICE File

=z |
<z

i [spice Program ‘

’ User Input ‘

Faulty Component
List

FCL
Parser/Writer

FM
Selector

Library
Editor

Parser

Graphics User Interface

{ \7 Borland
Database
Faulty Component Injector Engine
Faulty
Component
{} Library

SPICE Program Writer

AFSPG TJ L7

‘ (DBASE Format)

Figure 9: Functional Block of AFSPG System

e SPICE program parser:

First the SPICE Program Parser will read a fault
free SPICE program and parse each component of
it. Then it will maintain a list of the components
it parsed and display the list in the graphic user in-
terface, as shown at the lowest-left region of Figure
10. In this region, we use a tree view to display
the hierarchical relation of the SPICE program and
its components. The top node, named “Projects”,
is the root node. The child node of the top node,
named “test.CIR”, is the SPICE program current-
ly being opened in the AFSPG system. The child
nodes, “V17, “D1” etc., of the node “test.CIR” are
the components contained in this circuit file. Each
of these components, may have some child nodes
which indicate the available failure modes corre-
sponding to the component. Assume we have de-
fined two failure modes corresponding to a capaci-
tor, then every capacitor will has two child nodes,
e.g., “C1” has two child nodes “COpen” and “C-
Short”.

e Failure Modes Selector:

After AFSPG had parsed the required SPICE pro-
gram, the user can select the faults that he wants
to insert, and if necessary, modify the parameters
of the faulty components, as shown in Figure 10,
where the fault selected is “COpen” fault of C1.
The exclamation mark in front of the fault indi-
cates that the fault has been selected. The lowest
right region displays the faulty component template
corresponding to the COpen fault, and its contents
is editable. The designer can modify the default pa-
rameters or complete replace the faulty component
template with his own model through this Faulty
Module window.

e Faulty Component Injector:
After a designer has selected the faults that he
wants to insert into the fault free circuit, the Faulty
Component Injector will generate the faulty com-
ponent according to the faulty component template

corresponding to the original fault free component.
Then it will replace the original components with
the faulty components it has generated. Note that
this modification will only apply to the current com-
ponent, i.e., Cl. All other capacitors will no be
affected.

e Library Editor:

Our system also provides a faulty component li-
brary editor, as shown in Figure 11. This DBASE
based library maintains some essential fields which
a faulty component template needs. Through this
library, our system can figure out the componen-
t each fault corresponding to and display it in the
tree view as mentioned. In addition, a designer can
maintain his own faulty component templates ac-
cording to his own fault model. Note that if the
user edits his fault model by the Library Editor,
the modified template will apply to all components
that refers to this fault model.

bd Ve awmas B
=
Py fp

Ty

TFE_ID
AYITEY o o

HO_CF_MOCE

20 I SN T T R R 2l

Figure 11: Snapshot of Library Editor

4 Conclusion

In this paper, we present the AFSPG System: a window-
based system that allows a user to insert any faults into
SPICE programs. Based on this system, one can define
his own fault model or use the provided default fault
model to create appropriate faulty SPICE program. Our
system has now been incorporated into the Intelligent
Diagnosis and Test System (IDTS) developed by the In-
stitute for Information Industry and is a key component
in establishing the Fault Diagnosis Database for IDTS.
To complete this paper, a list of default fault models for

simple analog components based on the CASS standard
is given at the end of this paper.

References

[1] “IsSpiced User’s Guide,” Intusoft Corporation 1996.

[2] Sedra Smith, “Microelectronic Circuits, Third Edi-
tion,” 1992.

[3] Paolo Antognetti, Giuseppe Massobrio, “Semicon-
ductor Device Modeling with SPICE,” 1988.

[4] E.A. Amerasekera, D.S. Campbell, “Failure Mech-
anisms in Semicondctor Device,” 1987.

[5] Ruey-Wen Liu, “Testing and Daigonsis of Analog
Circuits and Systems,” 1991.

[6] “CASS Red Team Package data item DI-ATTS-
80285, Fig. 1 SRA/SRU Fault Accountability Ma-
trix Table, pp. 11.”

Table 1: Our Faulty Component List
[Component Type [Faulty Component Name | Implementation
R [Resistor RShort Change R Value to 1E-6
R [Resistor] ROpen Change R Value to 1E6
L [Inductor, LShort Cascode L With R(1E-6)
L [Inductor LOpen Cascade L With R(1E6)
C [Capacitor] CShort Cascode C With R(1E-6)
C [Capacitor] COpen Cascade C With R(1E6)
D [Diode] DShort Cascode D With R(1E-6)
D [Diode] DOpen Cascade D With R(1E6)
Q [BJT] QBEShort Cascade BE With R(1E-6)
Q [BJT] QBEOpenl Cascade BE With R1(1E-6)
Cascode E With R2(1E6)
[Junction BE break]

Q [BJT] QBEOpen2 Cascade E With R(1E6)
[Node E Break]

Q [BJT] QBEOpen3 Cascade B With R(1E6)
[Node B Break]

Q [BJT QCEShort Cascode CE With R(1E-6)

Q[BJT QCOpen Cascade C With R(1E6)

J [JFET] JSDOpen Cascade S With R1(1E6)

Cascade D With R2(1E6)

J [JFET JSDShort Cascode SD With R(1E-6)

J [JFET JGOpen Cascade G With R(1E6)

J [JFET JGSShort Cascode GS With R(1E-6)

J [JFET JGDShort Cascode GD With R(1E-6)

M [MOSFET] MSDOpen Cascade S With RI(1E6)

Cascade D With R2(1E6)

M [MOSFET MSDShort Cascode SD With R(1E-6)

M [MOSFET MGOpen Cascade G With R(1E6)

M [MOSFET MGSShort Cascode GS With R(1E-6)

M [MOSFET MGDShort Cascode GD With R(1E-6)

