
AR C H I TE C TU R E S P E C I F I C ATI O N

Embedded System Software Profile
 Rev 1.2 / 13.04.2002

 Michael Anburaj • embedded • ESSP1D1.doc Page 1 / 1

System Hardware
Initialization:

C Initialization:
Stack allocation & global
variable initialization

Special Mode:
Diagnostics, Flash Boot etc.

OS dependent Module
Initialization container:

Normal Mode: Device Application

Task 1: Device
Driver

Task 2:

Task n:

Virtual
Peripheral

Device
Driver

Device
Driver

Task Sequence: Tightly coupled (State machine) or
loosely coupled (RTOS)

Task Scheduling: Event or Time driven

RESET

Written in native assembly language

Written in high level language such as C

Written in high level OO language such as C++

OS independent Module
Initialization container:

Operating System
Invocation:

MODE

Functional Module:

CPU
Hardware,
external &

internal
peripherals

AR C H I TE C TU R E S P E C I F I C ATI O N

Embedded System Software Profile
 Rev 1.2 / 13.04.2002

 Michael Anburaj • embedded • ESSP1D1.doc Page 2 / 2

Device Drivers

RTOS

Device Application Layers

Device Drivers &
Virtual Peripherals

CPU Hardware, external & internal peripherals

Hardware Abstraction layer

Infrastructure

Interaction

AR C H I TE C TU R E S P E C I F I C ATI O N

Embedded System Software Profile
 Rev 1.2 / 13.04.2002

 Michael Anburaj • embedded • ESSP1D1.doc Page 3 / 3

TYPICAL MEMORY ORGANIZATION (Simple project)

RO space (text)

RW data copy

Executable image

 Unused ROM space

ROM
(FLASH)

Exception soft vectors
Interrupt soft vectors

Software vectors space

 Unused SRAM space
User stack
SVC stack

Undef stack
Abort stack
IRQ stack
FIQ stack

Stack space

SRAM

RW data (Initialized data)

ZI data (Zero initialized data)
Data space

Heap start address Heap space

DRAM
(SDRAM)

Executable image:
Contains the following:

1. RO space or the text area, which is the executable code with the constant variables (const).
Eg1. If(bFlag == nSuspended) return False;
Eg2. const unsigned int wPortID = 0x365261;

2. RW data copy, which is the copy of all the initialize values of the RW data.
Eg1. unsigned char bData = 23; /* 23, a copy of the RW initialize value kept in the RW data

copy area */

Unused ROM space: This may not be present if the image exactly fits the size of the ROM.

Software vector space: This area makes it possible to change Interrupt/Exception Service (ISR/ESR)
handlers at run-time. The start-up assembly file should have their hardware vector check the
corresponding soft vector location & branch to the pointed to location (service function).
Contains the following:

1. Exception soft vectors – All the processor exceptions have a corresponding soft vector location
here.

Eg1. pISR_DABORT defined in k41.h (processor header file - ARM from Samsung)
2. Interrupt soft vectors – All the peripheral interrupts have a corresponding soft vector location here.

Eg1. pISR_URX1 – UART1 Receiver interrupt soft vector.

RO Base

RW Base

Where:

Used memory space
Unused memory space

Note: RO Base (program start address) & RW Base (Data start address) are 2 parameter set in the Linker
flags.

AR C H I TE C TU R E S P E C I F I C ATI O N

Embedded System Software Profile
 Rev 1.2 / 13.04.2002

 Michael Anburaj • embedded • ESSP1D1.doc Page 4 / 4

Unused SRAM space: This buffer space may need not be maintained between the Software vector space
& the messy stack space.

Stack space: This space is separated into chunks & allocated for the stack for each processor mode. The
start-up assembly file needs to individually initialize the Stack Pointer (SP) for each processor mode with
the corresponding Stack start address (High address – in the case of descending stack. Low address – in
the case of ascending stack).
What goes in here?

1. Register saves between function calls including the return address (not in the case of ARM for it
has the lr, so the return address of the previous function call is saved).

2. Local variables & function passed argument variables are allocated in stack space after the
argument registers (CPU registers) are exhausted.

Note: For more information about these for the ARM, check the APCS for ARM.

Data space: The compiler (C & C++) allocates space for Global variables & the static variables in this
space.
Contains the following:

1. RW data – These are the value initialized global variables. The initialize values are copied from the
RW data copy region in ROM.

Eg1. U32 FLDD_wStartAdr = 0x0a000000;
2. ZI data – These are the zero initialized variables.

Note:The range information of this region is picked from the image placed next to the RW data
copy region (this may be particular to the ARM).

Eg1. U16 phwSamplePtr; /* un-initialized pointer variable */

Heap Space: This space is utilized for allocating run-time memory. (malloc() – in C & key word, new in
C++). The start of Heap is located just after the Data space.

