GARMIN GPS Interface Specification

December 6, 1999

Drawing Number: 001-00063-00 Rev. 3
File Type: Microsoft Word 97
Archive File: 00100063.003

Notice:

GARMIN Corporation makes no warranties, express or implied, to companies or individuals accessng GARMIN
Corporation’s GPS Interface, or any other person, with respect to the GPS Interface, including without limitation,
any warranties of merchantability or fitness for a particular purpose, or arising from course of performance or trade
usage, all of which are hereby excluded and disclaimed by GARMIN Corporation.

GARMIN Corporation shall not be liable for any indirect, incidental, consequential, punitive or special damages,
even if GARMIN Corporation has been advised of the possibility of such damages. Some states may not allow the
exclusion on limitation of liability from consequential or incidental damages, so the foregoing limitation on liability
for damages may not apply to you.

WARNING:

All companies and individual s accessing the GPS Interface are advised to ensure the correctness of their GPS
Interface software and to avoid the use of undocumented GPS Interface features, particularly with respect to packet
ID, command 1D, and packet data content. Any software implementation errors or use of undocumented features,
whether intentional or not, may result in damage to and/or unsafe operation of the GPS.

Technical Support is not Provided:

GARMIN Corporation cannot provide technical support for questions relating to the GPS Interface. However, if you
would like to comment on this document, or if you would like to report a document error, you may send email to
techsupp@garmin.com, or write to the address shown bel ow.

GARMIN Corporation
1200 E. 151¢ St
Olathe, Kansas USA 66062
(913) 397-8200

Copyright © 1998-1999 GARMIN Corporation

This document is subject to change without notice.

1

11
12
13

2.

3.
3.1

4,
4.1.

4.1.1.
4.1.2.
4.1.3.
4.1.4.

4.2.
4.3.

5.

51.
52
53.

53.1.

54.

6.
6.1.

6.1.1.

6.2

6.2.1.
6.2.2.
6.2.3.
6.2.4.

6.3.

6.3.1.
6.3.2.

6.4.
6.5

6.5.1.
6.5.2.
6.5.3.

6.6.

6.6.1.
6.6.2.
6.6.3.

6.7.
6.8.
6.9.
6.10.

Table Of Contents

INEFOTUCTION ...ttt ettt b e h e b e s b e s bt e s bt e s bt e e bt e s bt e sb e e nb e e nReesReeabeenbeenbeenbeenbeenbeenreenreens 5
OVEIVIBIV .ottt ettt h e bt b e h e e bt e E e e e Rt oo bt e ah e e eE e e aE e e aE e e e R e e eE e e eE e e e R e e aR e e aR e e nbeenReenbeenbeenbeenbeenreenreens 5
DEfiNITION OF TEIMS.....otiiitieiti ettt b e e bt et r e e bt e n e e b e re e b b e ne e neenre s 5
S lc el ilo o g e DT v W Y o= SRR 5

PIOLOCOI LBYEI'S. ... ettt ettt ettt ettt h et s a bt e s st e e b et e bt e e ehee e sabe e eabe e e be e e aaeeesabeeeabeeebeeeanneesnbean 6

PhYSICAI PrOLOCOIS. ...ttt ettt et b e bt e e s hb e e s st e e s abe e e be e e eheeeeabeesabeeebeeeanneesnbean 7
PO00 — Default PhYSICAl ProtOCOIcooiiiieiieiesiesie ettt st 7

LMK PrOUOCOIS ...ttt sttt ettt b bbb b bt e e b e sb e s b e sb e e s b e e e be e she e ebe e ebe e sbe e nneen b e e nneennns 8
L OO0 — BaSIC LINK PrOIOCOc.eiitiieeiiieiisiesie sttt sttt sttt st sb b bbb st nee e 8

PACKEL FOIMIAL ...ttt r e bt s bt e s b e e s b e e nb e e s b e e sbeesreesbeenbeenreenreenreens 8
[]I F 11 o USSR 8
ACK/NAK HANASNAKING ...ttt bbb st sb e sbe e e e 8
BaSIC PACKEL IDSccteeteeitieitee ettt sttt r e st s b b e r e s b e s R e e b e sr e nr e nr e e nreenreenreen 9
LOOL — LINK PrOtOCOH Loviieeeeeiiesie sttt sttt bbbt bbb st e bbb e e e et e b e sae e e e e e 9
L 002 — LINK PrOIOCOH 2cviieeeiiiieite ettt bttt b bbb b e ae e b e s b sbeeaeene e 10

Overview of ApPpliCation ProtOCOIS.ouiiiiiiiiei ettt ettt saee e sabe e sareeeees 11
PACKEL SEQUENCES.......ciitii ettt ettt b et b et eh b e e sa e e s be e eabe e e abe e e eaee e sabeesmbeeebeeeabaeesnneas 11
[6 G A DL e T Y oSS PRSP 11
Standard Beginning and ENding PacketS...........cooiiiiii e 12

RS o0 (0 Sl 1Y/ o= PRSI 12
GPS Overwriting of Identically-Named Data............cceioiiiiiieiiiii e e 12

APPIICALTON PIrOLOCOIS. ... ettt ettt ettt ettt rb et bt e e s e be e s bt e e be e e ebee e sabeesmbeesabeeeabeeesnneasnrenns 14

AOOO — ProdUCE DEta PrOtOCOcveeeetiitesieeeesie ettt sttt sttt e e sb et e e b b s beeeesbesbesieebenee s 14
L (oo (Vo g B - = R Y o TSP TOPR 14
A001 — Protocol Capability ProtOCO!coiieeiiiiiiii ettt ettt e st e be e saee s 15
PrOLOCOL_ATTY Ty ittt ettt ettt ettt ettt et e e she e e s abe e sab e e e be e e abe e e sabeesabeesmbeeebeeesnneas 15
[o1 (e/wo [BT v R 1Y/ oV UPR 15
Tag Values for ProtoCOl_Dat@ TYPE....cciueieiiieiiie ettt ettt ettt et sae e e b e 15
Protocol CapabilitieS EXAMIPIE......coieii ettt ettt ae e saee s 16
Device COmMMENG PrOLOCOIS.......ccitieitieiteeiteesiee sttt ettt sttt sttt sbe e sbeesbe e sbeesb e e sbeesbeesneesneenneennes 17
A010 — Device Command ProtOCOl Lceieiieeiierieeieesiee sttt 17
A011 — Device CoMMEaNd ProtOCOl 2..........coieiiieiieiiieeniiesiee sttt 17
A100 — Waypoint Transfer PrOtOCO!ooiuiiiiiiiiei ettt ettt e e saee s 19
ROULE TTaNSFEN PrOtOCO!cviiitieitieiteeitee ittt b bbb e b e b e b e b e sneesneennes 20
Database Matching for ROULE WayPOINSueieiueieiiieiiee ettt sbe e e saee s 20
A200 — ROULE TranSfEar PrOtOCOLc.ueeiueeiteeiiieiteeitee sttt 20
A201 — ROULE TranSfer PrOtOCOIc.ueeiteerieeiiieiteesiee sttt 21
Track Log TranSfer PrOtOCOL.ooiieiiii ittt sb et be e s be e e sbe e e saee e snneen 22
TimeValues Ignored DY GPS....... ..ot 22
A300 — Track Log Transfer ProtOCOLooiuiiiiii ittt 22
A301 — Track Log Transfer ProtOCOLooiiiiiiiieie ettt 23
A400 — Proximity Waypoint Transfer ProtOCO!cooeioiiioiiie e 24
AS500 — AIMENEC TranSfer PrOtOCOL.........coueiitieitierieesiee sttt sttt re e sr et sr e sr e nreesreenneens 25
AB00 — Dateand Time Initialization ProtoColccoieeiieiieiieiiesee e 26
AT700 — Position INitialization ProtoColcoeeiieiieiieiieieesee e 27

Page 2 001-00063-00 Rev. 3

6.11. ABOO — PVT Daa PrOtOCOeeetieitieitieitee sttt sb e sr e sre e sr e e nb e sreenre e 28

7. (D=t W Y << OO PO PP UPPPROPIP 29
7.1 SETAlIZAIION OF DBLA ... eeveeeeesiee ittt e e ean e an e e re s 29
7.2. CNAIACIES SEES. ..ottt h e h e h e a e h e a e a e et Rt ea et n e n e r e 29
7.3. S F S Lo O DT = B Y o =< TR TOTRR 29
7.3.1 00 T TSP P PP 29
7.3.2. LS TP T PP UP PR 29
7.3.3. o]0 To TSP 30
7.34. L1022 ST TP PR PSP PRPPPPPRRPRN 30
7.3.5. HOUDIE ...ttt b e bt bt bt E e bt bt e re e re e n e ne e n e 30
7.4. BasiC GARMIN Dl TYPES.ueeiteeitieiteestie sttt ettt st s bbb sb e e sb e e sb e e sbe e sbeesbeesbe e sbeesneesneesneenneas 30
7.4.1. (O o g £ = Y TSRS 30
7.4.2. Variahl @ Length SEHNGS.....co.eeeiii ettt ettt e st e e e rbee e saee e sabeea 30
7.4.3. 0] T TP TP TR 31
7.4.4. 110 (o PSP T PO PRPROPROPRTOT 31
7.4.5. FelgTo 1Yo o [P UPTTOTR 31
7.4.6. BOOIEAN ... 31
7.4.7. s e le o L Y o= RO 31
7.4.8. ez o o Y o= TP 31
7.4.9. Y 0] 0o T I oL T RO 32
7.5. ProdUCE-SPECITIC DAL TYPES ..ottt ettt ettt ettt ettt sae et et e et e e e ebe e e eaee e sabe e snbeeebeeeabeeesnneas 35
751 (DO T o A Y, o= TP TP 35
7.5.2. (D0 oL Y, o= TP P TP 35
7.5.3. (DO o i Y, o= TP PP U PP 36
7.54. (DO oL Y, o= TP TP 36
7.5.5. (D o i Y, o= TP TP 36
7.5.6. (DO SR T o A Y, o= TP P TR 37
7.5.7. (DO G T o A Y, o= TP TP T P PR TR 37
7.5.8. (DO T A Y, o= TP P TP 38
7.5.9. (D0 oL 1Y, o= TP TP 38
7.5.10. (DR O T oL Y, o= TP TP 40
7.5.11. (D Yo A Y, o= TP TP 40
7.5.12. (DAY Yo A Y, o= TP TP PP 41
7.5.13. (DAY Yo i Y, o= TP TP 42
7.5.14. (DR SR T A Y, o= TP TP 43
7.5.15. (D0 O (L=l (0| G 1Y, o= T TP TP PP 44
7.5.16. (D0 A (L=l (0| G 1Y, o= T TP P TP 44
7.5.17. (DO o (L=l (0| G 1Y, o= T TP T PP 44
7.5.18. D210 REE LINK _TYP. . teiiteeiteeitee ittt ettt ettt sttt e e e nne s 44
7.5.19. D300 _TrK PO _TYPE. ettt ittt sttt neene e 45
7.5.20. (DG 0 I 4 G o T N Y L= T TP TP TP 45
7.5.21. (D (O I 4 G o (0| G 1Y/ o T T PP TP PP 45
7.5.22. (D10 O o A oL 1Y, o =T TP TP TP 45
7.5.23. (D0 B o A oL 1Y, o =T T T PP PP PR TRPP 46
7.5.24. (DI O o A oL 1Y, o =T TP TP TP 46
7.5.25. D500 AIMANGE TP ettt ettt ettt et et et sh ettt e e be e e be e e sbee e sabe e sabe e eabeeeabeeesabeesmbeesnbeeebeeesaneas 46
7.5.26. (DL O N == o Y o T RPN 46
7.5.27. D550 AIMANGE TP tee ittt ettt ettt ettt h ettt e st e e bt e e sbee e sabe e sabe e e beeeabeeesateesabeesnbeeabeeesaneas 47
7.5.28. (DL A N == o Y o TP URTTUPR 47
7.5.29. DB00 DAt TIME TYPE .. teiitie et ettt et e tee bttt s bt et e e e be e e sbee e sabe e sabe e eabe e e abeeeeabeesabeesnbeaebeeesnneas 48
7.5.30. D0 O = oS Lo T 1Y, o= PRSI 48
7.5.31. (DS O O Y R D - = T Y, o= TP TP TP 48

Page 3 001-00063-00 Rev. 3

8. AAPPENTIXES. ...ttt ettt ettt ettt b etk et abe e be e e b et b et e eREe e oA Ee e e be e e bee e R et e eheeeenbeeebeeeabeeeaaeeennrean 50

8.1 (€1 ST 0o (0o 0 1 5 LU PRSP 50
8.2. GPS Product Protocol CapabilitiEScoiuiiiiei ittt sbe e 51
8.3. Frequently ASKEO QUESLIONS....uiiiee ittt et et sae e be e st e e e be e e abe e e sbee e sabeesmbeeebeeesbeeesneeas 52
8.3.1. UNAOCUMENTEA PrOLOCOIS.tiiieie ettt ettt ettt b e e saa e e sabe e st e e e bee e sane s 52
8.3.2. Hexadecimal vs. Decimal NUMDEN'Soooiiiii e e 53
8.3.3. Length of Recaived Dala PaCKeLooiiiiiiiei e e 53
8.34. WaypPOiNt CreatioN DELE........coiuiiiieieiii ettt ettt ettt be e sbe e e sabe e sabe e sbeeerbeeesnneesnneaans 53
8.35. AlIMAanNaC Data ParamELErS...........ooiiuiiaiiieiie ettt ettt et saee e sabe e sabe e sbe e e ebe e e saeeesareean 53
8.3.6. EXAMPIE COOR. ...ttt ettt ettt ettt sh et e s ate e s ab e e et e e e abe e e shte e sabeesnbeeebeeesneeas 53
8.3.7. Sample Data TranNSfEr DUMPSeeiieieiee e eiee et ettt e sbe e e sbe e e sbee e sabeesabeeenbeeeabeeesnbeesnbeeenees 54
8.3.8. AAITIONAl TADIES...c. ettt b e sa e e rabe e st e e e be e e ebee e saee e saneaaa 54
8.3.9. SOfIWEAIE VEISIONS ...ttt ettt ettt ettt ettt e st e e be e e e b b e e sab e e st e e e be e e ehee e sabeesabeeebeeeaabeesnbeesnbeaenees 54

Page 4 001-00063-00 Rev. 3

1. Introduction

1.1. Overview

This document describes the GARMIN GPS Interface, which is used to communicate with a GARMIN GPS
product. The GPS Interface supports bi-directional transfer of data such as waypoints, routes, track logs, proximity
waypoints, and satellite almanac. In the sections below, detailed descriptions of the interface protocols and data
types are given, and differences among GARMIN GPS products are identified.

1.2. Definition of Terms

In this document, “ GPS’ means the GPS device, and “Host” means the device communicating with the GPS (usually
a Personal Computer). Theterm “device” means either the GPS or the Hogt.

1.3. Specification of Data Types

All data typesin this document are specified using the C programming language. Detailed specifications for basic C
data types, basic GARMIN data types, and product-specific data types are found in Section 7, Data Types, on page
29. Datatypes having limited scope are specified in earlier sections throughout this document (usualy in the same
section in which they are introduced).

Page 5 001-00063-00 Rev. 3

2. Protocol Layers
The protocols used in the GARMIN GPS Interface are arranged in the following three layers:

Protocol Layer

Application (highest)
Link

Physical (lowest)

The Physical layer isbased on RS-232. The Link layer uses packets with minimal overhead. At the Application
layer, there are several protocols used to implement data transfers between a Host and a GPS. These protocols are
described in more detail later in this document.

Page 6 001-00063-00 Rev. 3

3. Physical Protocols

3.1. P0O0O — Default Physical Protocol

The default Physical protocol isbased on RS-232. The voltage characteristics are compatible with most Host
devices, however, the GPS transmits positive voltages only, whereas the RS-232 standard requires both positive and
negative voltages. Also, the voltage swing between mark and space may not be large enough to meet the strict
reguirements of the RS-232 standard. Still, the GPS voltage characteristics are compatible with most Host devices as
long asthe interface cableiswired correctly.

The other dectrical characteristics are full duplex, serial data, 9600 baud, 8 data bits, no parity hits, and 1 stop bit.
Provisions are made to support other Physical protocols (primarily higher baud rates), but each GPS product will
always operate with the default Physical protocol after power up.

The mechanical characteristics vary among GARMIN products; most products have custom-designed interface

connectorsin order to meet GARMIN packaging requirements. The electrical and mechanical connectionsto
standard DB-9 or DB-25 connectors can be accomplished with special cablesthat are available from GARMIN.

Page 7 001-00063-00 Rev. 3

4. Link Protocols

4.1. LOOO — Basic Link Protocol
All GPS products implement the Basic Link Protocol. Its primary purpose isto facilitate initial communication
between Host and GPS using the Product Data Protocol (see Section 6.1 on page 14), which allows the Host to

determine which type of GPS is connected. Using this knowledge, the Host can then determine which product-
specific Link protocol to use for al other communication with the GPS.

4.1.1. Packet Format

All dataistransferred in byte-oriented packets. A packet contains a three-byte header (DLE, ID, and Size), followed
by a variable number of data bytes, followed by a three-byte trailer (Checksum, DLE, and ETX). Thefollowing
diagram shows the format of a packet:

Byte Number | Byte Description Notes

0 Data Link Escape ASCII DLE character (16 decimal)

1 Packet 1D identifies the type of packet

2 Size of Packet Data number of bytes of packet data (bytes 3 to
n-4)

3ton-4 Packet Data 0 to 255 bytes

n-3 Checksum 2's complement of the sum of all bytes
from byte 1 to byte n-4

n-2 Data Link Escape ASCII DLE character (16 decimal)

n-1 End of Text ASCII ETX character (3 decimal)

4.1.2. DLE Stuffing

If any byte in the Size, Packet Data, or Checksum fieldsis equal to DLE, then a second DLE isinserted immediately
following the byte. This extra DLE isnot included in the size or checksum calculation. This procedure allows the
DLE character to be used to delimit the boundaries of a packet.

4.1.3. ACK/NAK Handshaking

Unless otherwise noted in this document, a device that receives a data packet must send an ACK or NAK packet to
the transmitting device to indicate whether or not the data packet was successfully received. Normally, the
transmitting device does not send any additional packets until an ACK or NAK is received (thisis sometimes
referred to asa“stop and wait” protocal).

The ACK packet has a Packet ID equal to 6 decimal (the ASCII ACK character), while the NAK packet hasa
Packet ID equal to 21 decimal (the ASCIl NAK character). Both ACK and NAK packets contain a 8-bit integer in
their packet data to indicate the Packet ID of the acknowledged packet. Note: some GPS unitswill report a Packet
Data Size of two bytesfor ACK and NAK packets; however, only the first byte should be considered.

Page 8 001-00063-00 Rev. 3

If an ACK packet is received, the data packet was received correctly and communication may continue. If a NAK
packet is received, the data packet was not received correctly and should be sent again. NAKs are used only to
indicate errors in the communications link, not errorsin any higher-layer protocol. For example, consider the
following higher-layer protocol error: a Pid_Wpt_Data packet was expected by the GPS, but avalid
Pid_Xfer_Cmplt packet was receved instead. This higher-layer protocol error does not cause the GPS to generate a
NAK.

Some GPS products may send NAK packets during communication timeout conditions. For example, when the GPS
iswaiting for a packet in the middle of a protocol sequence, it will periodically send NAK packets (typically every
2-5 seconds) if no data is received from the Host. The purpose of this NAK Packet is to guard against a deadlock
condition in which the Host iswaiting for an ACK or NAK in response to a data packet that was never received by
the GPS (perhaps due to cabl e disconnection during the middle of a protocol sequence). Not all GPS products
provide NAKSs during timeout conditions, so the Host should not rely on this behavior. It is recommended that the
Host implement its own timeout and retransmission strategy to guard against deadlock. For example, if the Host
does not receive an ACK within a reasonable amount of time, it could warn the user and give the option of aborting
or re-initiating the transfer.

4.1.4. Basic Packet IDs
The Basic Packet ID values are defined using the enumerations shown below:

enum
{
Pi d_Ack_Byte = 6,
Pi d_Nak_Byte = 21,
Pi d_Prot ocol _Array = 253, /* may not be inplenented in all products */
Pi d_Product _Rqgst = 254,
Pi d_Product _Dat a = 255

}s

Additional Packet IDs are defined by other Link protocol s (see below); however, the values of ASCII DLE (16
decimal) and ASCII ETX (3 decimal) arereserved and will never be used as Packet IDs in any Link protocol. This
allows more efficient detection of packet boundariesin the link-layer software implementation.

4.2. LOO1 — Link Protocol 1

ThisLink protocal is used for the majority of GPS products (see Section 8.2, GPS Product Protocol Capahilities, on
page 51). This protocol isthe same as LO00 — Basic Link Protocol, except that the following Packet IDs are used in
addition to the Basic Packet IDs:

Page 9 001-00063-00 Rev. 3

enum

{
Pi d_Command_Dat a

= 10,
Pi d_Xfer_Cnplt = 12,
Pi d_Dat e_Ti me_Dat a = 14,
Pi d_Posi tion_Data = 17,
Pi d_Prx_Wpt _Data = 19,
Pi d_Records = 27,
Pi d_Rt e_Hdr = 29,
Pid_Rte_Wt _Data = 30,
Pi d_Al manac_Dat a = 31,
Pid_Trk_Data = 34,
Pi d_Wt _Dat a = 35,
Pi d_Pvt_Dat a = b1,
Pi d_Rte_Link_Data = 098,
Pi d_Tr k_Hdr = 99
b

4.3. LOO2 — Link Protocol 2

ThisLink protocol isused mainly for panel-mounted aviation GPS products (see Section 8.2, GPS Product Protocol
Capabilities, on page 51). This protocol isthe same as L000 — Basic Link Protocoal, except that the following Packet
IDs are used in addition to the Basic Packet IDs:

enum
{
Pi d_Al manac_Dat a = 4,
Pi d_Command_Dat a = 11,
Pi d_Xfer_Cnplt = 12,
Pi d_Dat e_Ti me_Dat a = 20,
Pi d_Posi tion_Data = 24,
Pi d_Records = 35,
Pi d_Rt e_Hdr = 37,
Pid_Rte_Wt _Data = 39,
Pi d_Wt _Dat a = 43

b

Page 10 001-00063-00 Rev. 3

5. Overview of Application Protocols

Each Application protocal has a unique Protocol ID to allow it to be identified apart from the others. Future products
may introduce additional protocols to transfer new data types or to provide a newer version of an existing protocol
(e.g., protocol A101 might be introduced as a newer version of protocol A100). Whenever a new protocol is
introduced, it is expected that the Host software will have to be updated to accommodate the new protocol.

However, new products may continue to support some of the older protocols, so full or partial communication may
gtill be possible with older Host software. To better support this capability, newer products are able to report which
protocol s they support (see Section 6.2, AO01 — Protocol Capahility Protocol, on page 15). In al other cases, the
Host must contain a lookup table to determine which protocols to use with which product types (see Section 8.2,
GPS Product Protocol Capabilities, on page 51).

5.1. Packet Sequences

Each of the Application protocolsis defined in terms of a packet sequence, which defines the order and types of
packets exchanged between two devices, including direction of the packet, Packet ID, and packet data type. An
example of a packet sequence is shown below:

N Direction Packet ID Packet Data Type
0 Devicel ® Device2 Pid First First Data Type
1 Devicel ® Device? Pid_Second ignored

2 Devicel ® Device2 Pid Third <D0>

3 Devicel = Device2 Pid_Fourth <D1>

4 Devicel = Device2 Pid_Fifth <D2>

In this example, there are five packets exchanged: three from Devicel to Device2 and two in the other direction.
Each of these five packets must be acknowledged, but the acknowledgement packets are omitted from the table for
clarity. Most of the protocols are symmetric, meaning that the protocal for transfersin one direction (e.g., GPS to
Host) isthe same as the protocol for transfersin the other direction (e.g., Host to GPS). For symmetric protocols,
either the GPS or the Host may assume the role of Devicel or Device2. For non-symmetric protocol s, the sequence
tablewill explicitly show the roles of the GPS and Host instead of showing Devicel and Device2.

Thefirst column of the table shows the packet number (used only for reference; this number is not encoded into the
packet). The second column shows the direction of each packet transfer. The third column shows the Packet 1D
enumeration name (to determine the actual value for a Packet 1D, see Section 4, Link Protocols, on page 8). Thelast
column shows the Packet Data Type.

5.2. Packet Data Types

The Packet Data Type may be specified in several different ways. First, it may be specified with an explicitly-named
datatype (e.g., “First_Data Type’); all explicitly-named data types are defined in this document. Second, it may
indicate that the packet datais not used (e.g., “ignored”), in which case the packet data may have a zero size.

Finally, the data type for a packet may be specified using angle-bracket notation (e.g. <D0>). This notation indicates

Page 11 001-00063-00 Rev. 3

that the data type is product-specific. In the example above, there are three product-specific data types (<D0>,
<D1>, and <D2>).

These product-specific data types must be determined dynamically by the Host depending on which type of GPSis
currently connected. For older products, this determination is made through the use of alookup table within the Host
(see Section 8.2, GPS Product Protocol Capabilities, on page 51), however, newer GPS products are able to
dynamically report their protocols and data types (see Section 6.2, AOO1 — Protocol Capability Protocol, on page
15).

5.3. Standard Beginning and Ending Packets

Many Application protocols use standard beginning and ending packets called Pid_Records and Pid_Xfer_Cmpilt,
respectively, as shown in the table below:

N Direction Packet ID Packet Data Type
0 Devicel ® Device? Pid_Records Records_Type
n-1 | Devicel ® Device2 Pid_Xfer_Cmplt Command_ld_Type

Thefirst packet (Packet 0) provides Device2 with an indication of the number of data packets to follow, excluding
the Pid_Xfer_Cmplt packet (i.e., Packet 1 through n-2). This allows Device2 to monitor the progress of the transfer.
The last packet (Packet n-1) indicates that the transfer is complete. Thislast packet also contains data to indicate
which kind of transfer has been completed in the Command_Id_Type data type (see Section 6.3, Device Command
Protocols, on page 17).

The Command_Id_Type value for each kind of transfer matches the command ID used to initiate that kind of
transfer (see Section 6.3, Device Command Protocols, on page 17). Asaresult, the actual Command_Id_Type value
depends on which Device Command protocol isimplemented by the GPS. Because of this dependency, enumeration
names (not values) for Command_Id_Type are given in the description of each Application protocol later in this
document.

5.3.1. Records_Type

The Records_Type contains a 16-hit integer that indicates the number of data packets to follow, excluding the
Pid_Xfer_Cmplt packet. The type definition for the Records_Typeis shown below:

typedef int Records_Type;

5.4. GPS Overwriting of Identically-Named Data

When receiving data from the Host, most GPS units will erase identically-named data and replace it with the new
data received from the Host. For example, if the Host sends a waypoint named XY Z, most GPS units will overwrite
the waypoint named XY Z that was previoudy stored in GPS memory. No warning is sent from the GPS prior to
overwriting identically-named data.

Page 12 001-00063-00 Rev. 3

Some GPS units (e.g., the StreetPilot) have special handling for identically-named waypoints. These GPS units
compare the position of the incoming waypoint with the position of the existing waypoint (Note: altitudeisignored
during the comparison). If the positions match, the GPS will erase the identically-named waypoint and replace it
with the new waypoint received from the Host. If the positions differ, the unit will create a new, unique name for the
incoming waypoint and preserve the existing waypoint under the original name. There is no mechanism available for
the Host to determine which method a GPS uses for waypoints (overwriting vs. unique naming).

Page 13 001-00063-00 Rev. 3

6. Application Protocols

6.1. AO000 — Product Data Protocol

All GPS products are required to implement the Product Data Protocol using the default physical and basic link
protocol s described earlier in this document (i.e., the default RS-232 settings and the default packet format). The
Product Data Protocol is used to query the GPS to find out its Product 1D, which is then used by the Host to
determine which data transfer protocols are supported by the connected GPS (see Section 8.2, GPS Product Protocol
Capabilities, on page 51).

The packet sequence for the Product Data Protocol is shown below:

Direction Packet ID Packet Data Type
Host ® GPS Pid_Product_Rgst ignored
Host = GPS Pid Product Data Product_Data Type

Packet O (Pid_Product_Rqgst) isa special product request packet that is sent to the GPS. Packet 1
(Pid_Product_Data) is returned to the Host and contains data to identify the GPS, which is provided in the data type
Product_Data Type.

6.1.1. Product_Data_Type

The Product_Data_Type contains two 16-hit integers followed by one or more null-terminated strings. Thefirst
integer indicates the Product 1D, and the second integer indicates the software version number multiplied by 100
(e.g., version 3.11 will beindicated by 311 decimal). Following these integers, there will be one or more null-
terminated strings. Thefirst string provides a textual description of the GPS product and its software version; this
string isintended to be displayed by the Host to the user in an “about” dialog box. The Host should ignore all
subsequent strings; they are used during manufacturing to identify other properties of the product and are not
formatted for display to the end user.

The type definition for the Product_Data Type is shown below:

typedef struct

{

int product _I D;

int sof t war e_ver si on;
/* char product _description[]; null-term nated string */
I* .. zero or nore additional null-term nated strims */

} Product_Data_Type;

Page 14 001-00063-00 Rev. 3

6.2. A001 — Protocol Capability Protocol

The Protocol Capability Protocol is a one-way protocol that allows a GPS to report its protocol capabilities and
product-specific data types to the Host. When this protocol is supported by the GPS, it is automatically initiated by
the GPS immediately after completion of the Product Data Protocol. Using this protocol, the Host obtains alist of all
protocols and data types supported by the GPS.

The packet sequence for the Protocol Capability Protocol is shown below:

Direction Packet ID Packet Data Type
Host - GPS Pid_Protocol_Array Protocol_Array Type

Packet O (Pid_Protocol_Array) contains an array of Protocol_Data Type structures, each of which contains tag-
encoded protocol information.

The order of array elementsis used to associate data types with protocols. For example, a protocol that requires two
data types <D0O> and <D1> isindicated by a tag-encoded protocol 1D followed by two tag-encoded data type 1Ds,
where the first data type ID identifies <D0> and the second data type ID identifies <D1>.

6.2.1. Protocol_Array_Type

The Protocol_Array_Typeisan array of Protocol_Data Type structures. The number of Protocol_Data Type
structures contained in the array is determined by observing the size of the received packet data.

typedef Protocol _Data_Type Protocol _Array_Type[];

6.2.2. Protocol_Data_Type

The Protocol_Data Typeis comprised of a one-byte tag field and a two-byte data field. The tag identifies which
kind of ID is contained in the data field, and the data field contains the actual 1D.

typedef struct
byte tag;

wor d dat a;
} Protocol _Data_Type;

The combination of tag value and data value must correspond to one of the protocols or data types specified in this
document. For example, this document specifies a Waypoint Transfer Protocol identified as“ A100.” This protocol
isrepresented by atag value of ‘A’ and adatafield value of 100.

6.2.3. Tag Values for Protocol_Data_Type

The enumerated values for the tag member of the Protocol_Data. Type are shown below. The characters shown are
trandated to numeric values using the ASCII character set.

Page 15 001-00063-00 Rev. 3

enum

{
Tag_Phys_Prot_Id

=P, /* tag for Physical protocol ID */
Tag_Link_Prot_Id = ‘L, /* tag for Link protocol ID */
Tag_Appl _Prot_Id ="A, /* tag for Application protocol ID */
Tag_Data_Type_Id ='D /* tag for Data Type ID */
b
6.2.4. Protocol Capabilities Example

The following table shows a series of three-byte records that might be received by a Host during the Protocol
Capabilities Protocol :

tag Data Notes

(byte 0) | (bytes 1 & 2)

‘P 0 GPS supports the Default Physical Protocol (POOO)

‘L’ 1 GPS supports Link Protocol 1 (L001)

‘A 10 GPS supports Device Command Protocol 1 (A010)

‘A 100 GPS supports the Waypoint Transfer Protocol (A100)

‘D’ 100 GPS uses Data Type D100 for <D0> during waypoint transfer
‘A 200 GPS supports the Route Transfer Protocol (A200)

‘D’ 200 GPS uses Data Type D200 for <D0O> during route transfer

‘D’ 100 GPS uses Data Type D100 for <D1> during route transfer

‘A 300 GPS supportsthe Track Log Transfer Pratocol (A300)

‘D’ 300 GPS uses Data Type D300 for <DO> during track log transfer
‘A 500 GPS supports the Almanac Transfer Protocol (A500)

‘D’ 500 GPS uses Data Type D500 for <DO> during almanac transfer

The GPS omits the following protocol s from the above transmission:

A000 — Product Data Protocol
A001 — Protocol Capability Protocol

A000 is omitted because all products support it. AOO1 is omitted becauseit isthe very protocol being used to
communicate the protocol information.

Page 16 001-00063-00 Rev. 3

6.3. Device Command Protocols

This section describes a group of similar protocols known as Device Command protocols. These protocols are used
to send commands to a device (usually the GPS); for example, the Host might command the GPS to transmit its
waypoints. All GPS products are required to implement one of the Device Command protocols, although some
commands may not be implemented by the GPS (reception of an unimplemented command causes no error in the
GPS; it smply ignores the command). The only difference among Device Command protocolsis that the
enumerated values for the Command_Id_Type are different (see the section for each Device Command protocol

bel ow).

Notethat either the Host or GPS is allowed to initiate a transfer without a command from the other device (for
example, when the Host transfers data to the GPS, or when the user presses buttons on the GPSto initiate a transfer).

The packet sequence for each Device Command protocol is shown below:

Direction Packet ID Packet Data Type
0 Devicel ® Device2 Pid Command Data Command_ld_Type

Packet O (Pid_Command_Data) contains data to indicate a command, which is provided in the data type
Command_ld_Type. The Command_Id_Type contains a 16-hit integer that indicates a particular command. The
type definition for Command_Id_Type is shown below:

typedef int Conmmand_l d_Type;

6.3.1. A010 — Device Command Protocol 1

This protocol isimplemented by the majority of GPS products (see Section 8.2, GPS Product Protocol Capabilities,
on page 51). The enumerated values for Command_Id_Type are shown bel ow:

enum
{
Cmd_Abort_Transfer = 0, /* abort current transfer */
Cmd_Transfer _Alm = 1, /* transfer al nanac */
Cmmd_Tr ansf er _Posn = 2, /* transfer position */
Cmd_Transf er _Prx = 3, /* transfer proximty waypoints */
Cmd_Transfer_Rte = 4, /* transfer routes */
Cmd_Transfer _Ti ne = b5, /* transfer tine */
Cmd_Transfer_Trk = 6, /* transfer track |og */
Cmmd_Tr ansf er _Wht = 7, /* transfer waypoints */
Cmd_Turn_Of f _Pwr = 8§, /* turn of f power */
Cmd_Start_Pvt_Data = 49, /* start transmitting PVT data */
Cmd_St op_Pvt _Data = 50 /* stop transmitting PVT data */

}s

NOTE: the"Cmnd_Turn_Off_Pwr” command may not be acknowledged by the GPS.

6.3.2. A011 — Device Command Protocol 2

This protocol isimplemented mainly by pand-mounted aviation GPS products (see Section 8.2, GPS Product
Protocol Capahilities, on page 51). The enumerated values for Command_Id_Type are shown bel ow:

Page 17 001-00063-00 Rev. 3

enum

{

Cmmd_Abort _Transfer
Cmd_Transfer_Alm
Cmd_Transfer_Rte
Cmd_Transfer _Ti ne
Cmmd_Tr ansf er _Wht
Cmd_Turn_Of f _Pwr

b

/*
/*
/*
/*
/*
/*

abort current transfer
transfer al manac
transfer routes
transfer tine
transfer waypoints
turn of f power

Page 18

*/
*/
*/
*/
*/
*/

001-00063-00 Rev. 3

6.4. A100 — Waypoint Transfer Protocol

The Waypoint Transfer Protocol is used to transfer waypoints between devices. When the Host commands the GPS
to send waypoints, the GPS will send every waypoint stored in its database. When the Host sends waypointsto the

GPS, the Host may selectively transfer any waypoint it chooses.

The packet sequence for the Waypoint Transfer Protocal is shown below:

N Direction Packet ID Packet Data Type
0 Devicel ® Device? Pid_Records Records_Type

1 Devicel ® Device2 Pid Wpt_Data <D0O>

2 Devicel ® Device2 Pid Wpt_Data <D0>

n-2 | Devicel ® Device2 Pid Wpt_Data <D0>

n-1 | Devicel ® Device2 Pid_Xfer_Cmplt Command_ld_Type

Thefirst and last packets (Packet 0 and Packet n-1) are the standard beginning and ending packets (see Section 5.3,
Standard Beginning and Ending Packets, on page 12). The Command_ld_Type value contained in Packet n-1is
Cmnd_Transfer_Wpt, which is also the command value used by the Host to initiate a transfer of waypoints from the

GPS.

Packets 1 through n-2 (Pid_Wpt_Data) each contain data for one waypoint, which is provided in product-specific
data type <D0>. This data type usually contains an identifier string, latitude and longitude, and other product-

specific data.

Page 19

001-00063-00 Rev. 3

6.5. Route Transfer Protocol

The Route Transfer Protocol is used to transfer routes between devices. When the Host commands the GPS to send
routes, the GPS will send every route stored in its database. When the Host sends routes to the GPS, the Host may
selectively transfer any route it chooses.

6.5.1. Database Matching for Route Waypoints

Certain products contain an internal database of waypoint information; for example, most aviation products have an
internal database of aviation waypoints, and the StreetPilot has an internal database of land waypoints. When routes
are being transferred from the Host to one of these GPS products, the GPS will attempt to match the incoming route
waypoints with waypointsin itsinternal database. First, the GPS inspects the “wpt_class’ member of the incoming
route waypoint; if it indicates a non-user waypoint, then the GPS searchesitsinternal database using values
contained in other members of the route waypoint. For aviation units, the “ident” and “cc” members are used to
search the internal database; for the StreetPilot, the * subclass’ member is used to search theinternal database. If a
match is found, the waypoint from theinternal databaseis used for the route; otherwise, a new user waypoint is
created and used for the route.

6.5.2. A200 — Route Transfer Protocol
The packet sequence for the A200 Route Transfer Protocol is shown bel ow:

N Direction Packet ID Packet Data Type
0 Devicel ® Device? Pid_Records Records_Type

1 Devicel ® Device2 Pid Rte Hdr <D0>

2 Devicel ® Device2 Pid_Rte Wpt_Data <D1>

3 Devicel ® Device2 Pid_Rte Wpt_Data <D1>

n-2 | Devicel ® Device2 Pid_Rte Wpt_Data <D1>

n-1 | Devicel ® Device2 Pid_Xfer_Cmplt Command_ld_Type

Thefirst and last packets (Packet 0 and Packet n-1) are the standard beginning and ending packets (see Section 5.3,
Standard Beginning and Ending Packets, on page 12). The Command_ld_Type value contained in Packet n-1is
Cmnd_Transfer_Rte, which is also the command value used by the Host to initiate a transfer of routes from the GPS.

Packet 1 (Pid_Rte Hdr) contains route header information, which is provided in product-specific data type <D0>.
This data type usually contains information that uniquely identifies the route. Packets 2 through n-2

(Pid_Rte Wpt_Data) each contain data for one route waypoint, which is provided in product-specific data type
<D1>. This data type usually contains the same waypoint data that is transferred in the Waypoint Transfer Protocal .

More than one route can be transferred during the protocol by sending another set of packets that resemble Packets 1

through n-2 in the table above. This additional set of packetsis sent immediately after the previous set of route
packets. In other words, it isnot necessary to send Pid_Xfer_Cmplt until all route packets have been sent for the

Page 20 001-00063-00 Rev. 3

multiple routes. Device2 must monitor the Packet 1D to detect the beginning of a new route, which isindicated by a
Packet ID equal to Pid_Rte Hdr. Any number of routes may be transferred in this fashion.

6.5.3. A201 — Route Transfer Protocol
The packet sequence for the A201 Route Transfer Protocal is shown bel ow:

N Direction Packet ID Packet Data Type
0 Devicel ® Device? Pid_Records Records_Type

1 Devicel ® Device2 Pid Rte Hdr <D0>

2 Devicel ® Device2 Pid_Rte Wpt_Data <D1>

3 Devicel ® Device2 Pid Rte Link_Data <D2>

4 Devicel ® Device2 Pid_Rte Wpt_Data <D1>

5 Devicel ® Device2 Pid Rte Link_Data <D2>

n-2 | Devicel ® Device2 Pid_Rte Wpt_Data <D1>

n-1 | Devicel ® Device2 Pid_Xfer_Cmplt Command_ld_Type

Thefirst and last packets (Packet 0 and Packet n-1) are the standard beginning and ending packets (see Section 5.3,
Standard Beginning and Ending Packets, on page 12). The Command_ld_Type value contained in Packet n-1is
Cmnd_Transfer_Rte, which is also the command value used by the Host to initiate a transfer of routes from the GPS.

Packet 1 (Pid_Rte Hdr) contains route header information, which is provided in product-specific data type <D0>.
This data type usually contains information that uniquely identifies the route. Even numbered packets starting with
packet 2 and excluding packet n-1 (Pid_Rte Wpt_Data) contain data for one route waypoint, which is provided in
product-specific data type <D1>. Odd numbered packets starting with packet 3 and excluding packet n-1

(Pid_Rte Link_Data) contain data for one link between the adjacent waypoints. Thislink data provided in product-
specific data type <D2>.

More than one route can be transferred during the protocol by sending another set of packets that resemble Packets 1
through n-2 in the table above. This additional set of packetsis sent immediately after the previous set of route
packets. In other words, it isnot necessary to send Pid_Xfer_Cmplt until all route packets have been sent for the
multiple routes. Device2 must monitor the Packet 1D to detect the beginning of a new route, which isindicated by a
Packet ID equal to Pid_Rte Hdr. Any number of routes may be transferred in this fashion.

Page 21 001-00063-00 Rev. 3

6.6. Track Log Transfer Protocol

6.6.1. Time Values Ignored by GPS

When the Host transfers a track log to the GPS, the GPS ignores the incoming time value for each track log point
and setsthetime valueto zero in itsinternal database. If the GPS later transfers the track log back to the Host, the
time values will be zero. Thus, the Host is able to differentiate between track logs that were actually recorded by the
GPS and track logs that were transferred to the GPS by an external Host.

NOTE: Some GPS units use Ox7FFFFFFF or OxFFFFFFFF instead of zero to indicate an invalid time val ue.

6.6.2. A300 — Track Log Transfer Protocol

The Track Log Transfer Protocol is used to transfer track logs between devices. Most GPS products store only one
track log (called the “active” track log), however, some newer GPS products can store multiple track logs (in
addition to the active track log). When the Host commands the GPS to send track logs, the GPS will concatenate all
track logs (i.e., the active track log plus any stored track logs) to form one track log consisting of multiple segments;
i.e., the protocol does not provide away for the Host to request selective track 1ogs from the GPS, nor isthere away
for the Host to decompose the concatenated track log into its original set of track logs. When the Host sends track
logs to the GPS, the track log is always stored in the active track log within the GPS; i.e., thereis no way to transfer
track logs into the database of stored track logs. None of these limitations affect GPS products that store only one
track log.

The packet sequence for the Track Log Transfer Praotocol is shown bel ow:

N Direction Packet ID Packet Data Type
0 Devicel ® Device? Pid_Records Records_Type

1 Devicel ® Device2 Pid Trk_Data <D0>

2 Devicel ® Device2 Pid Trk_Data <D0>

n-2 | Devicel ® Device2 Pid Trk_Data <D0>

n-1 | Devicel ® Device2 Pid_Xfer_Cmplt Command_ld_Type

Thefirst and last packets (Packet 0 and Packet n-1) are the standard beginning and ending packets (see Section 5.3,
Standard Beginning and Ending Packets, on page 12). The Command_ld_Type value contained in Packet n-1is
Cmnd_Transfer_Trk, which is also the command value used by the Host to initiate a transfer of track logs from the
GPS.

Packets 1 through n-2 (Pid_Trk_Data) each contain data for onetrack log point, which is provided in product-

specific data type <D0O>. This data type usually contains four e ements: latitude, longitude, time, and a Boolean flag
indicating whether the point marks the beginning of a new track log segment.

Page 22 001-00063-00 Rev. 3

6.6.3. A301 — Track Log Transfer Protocol
The packet sequence for the Track Log Transfer Praotocol is shown bel ow:

N Direction Packet ID Packet Data Type
0 Devicel ® Device? Pid_Records Records_Type

1 Devicel ® Device2 Pid Trk_Hdr <D0O>

2 Devicel ® Device2 Pid Trk_Data <D1>

3 Devicel ® Device2 Pid Trk_Data <D1>

n-2 | Devicel ® Device2 Pid Trk_Data <D1>

n-1 | Devicel ® Device2 Pid_Xfer_Cmplt Command_ld_Type

Thefirst and last packets (Packet 0 and Packet n-1) are the standard beginning and ending packets (see Section 5.3,
Standard Beginning and Ending Packets, on page 12). The Command_ld_Type value contained in Packet n-1is
Cmnd_Transfer_Trk, which is also the command value used by the Host to initiate a transfer of track logs from the
GPS.

Packet 1 (Pid_Trk_Hdr) contains track header information, which is provided in product-specific data type <D0>.
This data type usually contains information that uniquely identifies the track log. Packets 2 through n-2
(Pid_Trk_Data) each contain data for one track log point, which is provided in product-specific data type <D1>.

More than one track log can be transferred during the protocol by sending another set of packets that resemble
packets 1 through n-2 in the table above. Thisadditional set of packetsis sent immediately after the previous set of
track log packets. In other words, it is not necessary to send Pid_Xfer_Cmplt until all track log packets have been
sent for the multiple track logs. Device2 must monitor the Packet ID to detect the beginning of a new track log,
which isindicated by a Packet ID of Pid_Trk_Hdr. Any number of track logs may be transferred in this fashion.

Page 23 001-00063-00 Rev. 3

6.7. A400 - Proximity Waypoint Transfer Protocol

The Proximity Waypoint Transfer Protocol isused to transfer proximity waypoints between devices. When the Host
commands the GPS to send proximity waypoints, the GPS will send all proximity waypoints stored in its database.
When the Host sends proximity waypoints to the GPS, the Host may selectively transfer any proximity waypoint it

chooses.

The packet sequence for the Proximity Waypoint Transfer Protocol is shown below:

N Direction Packet ID Packet Data Type
0 Devicel ® Device? Pid_Records Records_Type

1 Devicel ® Device2 Pid_Prx_Wpt_Data <D0>

2 Devicel ® Device2 Pid_Prx_Wpt_Data <D0>

n-2 | Devicel ® Device2 Pid_Prx_Wpt_Data <D0>

n-1 | Devicel ® Device2 Pid_Xfer_Cmplt Command_ld_Type

Thefirst and last packets (Packet 0 and Packet n-1) are the standard beginning and ending packets (see Section 5.3,
Standard Beginning and Ending Packets, on page 12). The Command_ld_Type value contained in Packet n-1is
Cmnd_Transfer_Prx, which is also the command value used by the Host to initiate a transfer of proximity waypoints

from the GPS.

Packets 1 through n-2 (Pid_Prx_Wpt_Data) each contain data for one proximity waypoint, which is provided in
product-specific data type <DO0>. This data type usually contains the same waypoint data that is transferred during

the Waypoint Transfer Protocol, plus avalid proximity alarm distance.

Page 24

001-00063-00 Rev. 3

6.8. A500 — Almanac Transfer Protocol

The Almanac Transfer Protocol is used to transfer almanacs between devices. The main purpose of this protocol is
to allow a Host to update a GPS that has been in storage for more than six months, or has undergone a memory clear
operation. To avoid a potentially lengthy auto-initialization sequence, the GPS must have current almanac,
approximate date and time, and approximate position. Thus, after transferring an almanac to the GPS, the Host
should subsequently transfer the date, time, and position (in that order) to the GPS using the following protocals:
A600 — Date and Time Initialization Protocol, and A700 — Position Initialization Protocol (see page 26 and 27).
After receiving the almanac, the GPS may transmit a request for time and/or a request for position using one of the
Device Command protocols.

The GPS s also able to transmit almanac to the Hogt, allowing the user to archive the almanac or transfer the
almanac to another GPS.

The packet sequence for the Almanac Transfer Protocol is shown bel ow:

N Direction Packet ID Packet Data Type
0 Devicel ® Device? Pid_Records Records_Type

1 Devicel ® Device2 Pid Almanac Data <D0>

2 Devicel ® Device2 Pid Almanac Data <D0>

n-2 | Devicel ® Device2 Pid Almanac Data <D0>

n-1 | Devicel ® Device2 Pid_Xfer_Cmplt Command_ld_Type

Thefirst and last packets (Packet 0 and Packet n-1) are the standard beginning and ending packets (see Section 5.3,
Standard Beginning and Ending Packets, on page 12). The Command_ld_Type value contained in Packet n-1is
Cmnd_Transfer_Alm, which is also the command value used by the Host to initiate a transfer of the almanac from
the GPS

Packets 1 through n-2 (Pid_Almanac_Data) each contain almanac data for one satellite, which is provided in
product-specific data type <D0>. This data type contains data that describes the satellite’ s orbit characteristics.

Some product-specific data types (<D0>) do not include a satellite ID to relate each data packet to a particular
satdllite in the GPS congtellation. For these data types, Devicel must transmit exactly 32 Pid_Almanac_Data
packets, and these packets must be sent in PRN order (i.e., the first packet contains data for PRN-01 and so on up to
PRN-32). If the data for a particular satelliteismissing or if the satellite is non-existent, then the week number for
that satellite must be set to a negative number to indicate that the dataisinvalid.

Page 25 001-00063-00 Rev. 3

6.9. A600 — Date and Time Initialization Protocol

The Date and Time Initialization Protocol is used to transfer the current date and time between devices. Thisis
normally done in conjunction with transferring an almanac to the GPS (see Section 6.8, A500 — Almanac Transfer

Protocol, on page 25).

The packet sequence for the Date and Time Initialization Protocal is shown bel ow:

Direction

Packet ID

Packet Data Type

0 Devicel ® Device2

Pid Date Time Data

<D0>

Packet O (Pid_Date Time Data) contains date and time data, which is provided in product-specific data type <D0>.

Page 26

001-00063-00 Rev. 3

6.10. A700 — Position Initialization Protocol

The Position Initialization Protocol isused to transfer the current position between devices. Thisisnormally donein
conjunction with transferring an almanac to the GPS (see Section 6.8, A500 — Almanac Transfer Protocol, on page

25).

The packet sequence for the Position Initialization Protocol is shown below:

Direction

Packet ID

Packet Data Type

0 Devicel ® Device2

Pid Position Data

<D0>

Packet O (Pid_Position_Data) contains position data, which is provided in product-specific data type <D0>. The
GPS may ignore the position data provided by this protocal whenever the GPS has a valid position fix or whenever

the GPSisin smulator mode.

Page 27

001-00063-00 Rev. 3

6.11. A800 — PVT Data Protocol

The PVT Data Protocal is used to provide the Host with real-time position, velocity, and time (PVT) data, which is
transmitted by the GPS approximately once per second. This protocol is provided as an alternative to NMEA so that
the user may permanently choose the GARMIN format on the GPS instead of switching back and forth between
NMEA format and GARMIN format.

The Host can turn PVT data on or off by using a Device Command Protocol (see Section 6.3, Device Command
Protocols, on page 17). PVT datais turned on when the Host sendsthe Cmnd_Start_Pvt_Data command and is
turned off when the Host sends the Cmnd_Stop _Pvt_Data command. Note that, as a side effect, most GPS products
turn off PVT data whenever they respond to the Product Data Protocol .

ACK and NAK packets are optional for this protocol; however, unlike other protocols, the GPS will not retransmit a
PVT data packet in responseto receiving a NAK from the Host.

The packet sequence for the PVT Data Protocol is shown below:

Direction Packet ID Packet Data Type
0 Host = GPS Pid_Pvt_Data <D0O>
(ACK/NAK optional)

Packet O (Pid_Pvt_Data) contains position, velocity, and time data, which is provided in product-specific data type
<D0>.

Page 28 001-00063-00 Rev. 3

7. Data Types

7.1. Serialization of Data

Every data type must be serialized into a stream of bytes for transferal over a serial data link. Serialization of each
data type is accomplished by transmitting the bytesin the order that they would occur in memory given a machine
with the following characteristics: 1) data structure members are stored in memory in the same order as they appear
in the type definition; 2) all structures are packed, meaning that there are no unused “pad” bytes between structure
members; 3) multibyte numeric types (such asint, long, float, and double) are stored in memory using little-endian
format, meaning the least-significant byte occurs first in memory followed by increasingly significant bytesin
successive memory locations.

7.2. Character Sets

Unless otherwise noted, all GPS products use characters from the ASCII character set. Each string typeislimited to
a specific subset of ASCII characters as shown below:

User Waypoint Identifier: upper-case letters, numbers

Waypoint Comment: upper-case letters, numbers, space, hyphen
Route Comment: upper-case letters, numbers, space, hyphen
City: ignored by GPS

State: ignored by GPS

Facility Name: ignored by GPS

Country Code: upper-case letters, numbers, space

Route Identifier: upper-case letters, numbers, space, hyphen
Route Waypoint Identifier: any ASCII character

Link Identifier: any ASCII character

Track ldentifier: upper-case letters, numbers, space, hyphen

Some products may allow additional characters beyond those mentioned above, but no attempt is made in this
document to identify these product-specific additions. The Host should be prepared to receive any ASCII character
from the GPS, but only transmit the characters shown above back to the GPS.

7.3. Basic C Data Types

7.3.1. char

The char datatypeis 8-bit integer or ASCII data. This data type is signed unless the unsigned keyword is present.

7.3.2. int
Theint datatypeis 16-bit integer data. This datatypeis signed unless the unsigned keyword is present.

Page 29 001-00063-00 Rev. 3

7.3.3. long
Thelong data typeis 32-hit integer data. This data type is signed unless the unsigned keyword is present.

7.3.4. float
Thefloat datatypeis 32-hit IEEE-format floating point data (1 sign bit, 8 exponent bits, and 23 mantissa bits).

7.3.5. double
The double data type is 64-bit IEEE-format floating point data (1 sign bit, 11 exponent bits, and 52 mantissa hits).

7.4. Basic GARMIN Data Types
The following are basic GARMIN data types that are used in the definition of more complex data types.

7.4.1. Character Arrays

Unless otherwise noted, all character arrays are padded with spaces and are not required to have a null terminator.
For example, consider the following data type:

char xyz[6]; [/* xyz type */
Theword “CAT” would be stored in this data type as shown below:

xyz[0]
xyz[1]
xyz[2]
xyz[3]
xyz[4]
xyz[5]

c,
A
T

Character arrays provide a way to transfer strings between the Host and the GPS. However, the size of a character
array may exceed the number of characters that a GPS has allotted for the string being transferred. If thisis the case,
the GPS will ignore any characters beyond the size of its allotted string. For example, a“cmnt” character array may
allow 40 charactersto be transferred, but a GPS may only have 16 characters allotted for a“cmnt” string. In this
case, the GPS will ignore the last 24 characters of the transferred character array.

7.4.2. Variable-Length Strings

In contrast to character arrays, a variable-length string is a null-terminated string that can be any length aslong it
does not cause a data packet to become larger than the maximum allowable data packet size. When a variable-length
string isamember of a data structure, the data type is specified as follows:

typedef struct

{

i nt ABC;
/* char XYZ[] null-term nated string */
i nt DEF;

} exampl e_type;

Page 30 001-00063-00 Rev. 3

This syntax indicates that a variable-length string named XY Z occurs between the ABC and DEF members of the
data structure. Therefore, the address offset (from the beginning of the data structure) of the DEF member cannot be
known until run-time (after the variable-length string is decoded). Whenever possible, variable-length strings are
placed at the end of a data structure to minimize the need for run-time address offset calculations.

7.4.3. byte
The byte typeis used for 8-bit unsigned integers:

typedef unsigned char byt e;

7.4.4. word
The word typeis used for 16-bit unsigned integers:

typedef unsigned int wor d;

7.4.5. longword
The longword typeis used for 32-bit unsigned integers:

typedef unsigned | ong | ongwor d;

7.4.6. boolean
The boolean type an 8-bit integer used to indicate true (non-zero) or false (zero):

typedef unsigned char bool ean;

7.4.7. Semicircle_Type

Theinteger Semicircle Typeisused to indicate |atitude and longitude in semicircles, where 2% semicircles equals
180 degrees. North latitudes and East longitudes are indicated with positive numbers; South latitudes and West
longitudes are indicated with negative numbers.

typedef struct
| ong | at; /* latitude in semcircles */

| ong | on; /* longitude in semicircles */
} Semicircle_Type;

The following formulas show how to convert between degrees and semicircles:

degrees = semicircles* (180/ 2°')
semicircles = degrees* (2%/ 180)

7.4.8. Radian_Type

Thefloating point Radian_Typeis used to indicate latitude and longitude in radians, where p radians equals 180
degrees. North latitudes and East longitudes are indicated with positive numbers; South latitudes and West
longitudes are indicated with negative numbers.

Page 31 001-00063-00 Rev. 3

typedef struct

doubl e | at; /* latitude in radians
doubl e | on; /* longitude in radians
} Radi an_Type;

The following formulas show how to convert between degrees and radians:

degrees=radians* (180/p)
radians = degrees* (p/180)

7.4.9. Symbol_Type

The Symbol_Typeisused in certain GPS products to indicate the symbol for a waypoint:

typedef int Symbol _Type;

*/
*/

The enumerated values for Symbol_Type are shown below. Note that most GPS products that use thistype are
limited to a much smaller subset of these symbols, and no attempt is made in this document to indicate which
subsets are valid for each of these GPS products. However, the GPS will ignore any unallowed symbol values that
arereceived and instead substitute the value for a generic dot symbol. Therefore, thereis no harm in attempting to
use any value shown in the table below except that the GPS may not accept the requested value.

Page 32

001-00063-00 Rev. 3

Synmbol s for marine (group 0...0-8191...bits 15-13=000).

sym anchor
sym bel

sym di anond_grn
sym di anond_r ed

sym di vel
sym di ve2

sym dol | ar

sym fish

sym fue

sym horn

sym house

sym kni fe

sym |ight

sym nug

sym skul

sym square_grn
sym square_red
sym wbuoy
sym wpt _dot
sym wr eck

sym nul

sym nob

map buoy symbol
bl ack map buoy synbol

sym buoy_anbr
sym buoy_bl ck
sym buoy_bl ue
sym buoy_grn

sym buoy_grn_red
sym buoy_gr n_wht

sym buoy_orng
sym buoy_red

sym buoy_red_grn
sym buoy_r ed_wht
sym buoy_vi ol et
sym buoy_wht

sym buoy_wht _grn
sym buoy_wht _red

sym dot
sym rbcn

| eave space for

sym boat _ranp
sym canp

sym restroons
sym shower s

symdrinking_wtr

sym phone
sym 1st _aid
sym.info
sym par ki ng
sym park

sym picnic

sym scenic
sym ski i ng
sym swi mmi ng
sym dam
symcontrol | ed
sym danger
symrestricted
symnul | _2

sym bal

(DOO\IO?LH_-&OOI\)I—‘O

nore nava

150,
151,
152,
153,
154,
155,
156,
157,
158,
159,
160,
161,
162,
163,
164,
165,
166,
167,
168,
169,

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

/*
/*
/*
/*
/*
/*
/*
/*
/*

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

white
white
green
red d
di ver
di ver
white
white
white
white
white
white
white
white
white
green
red s
white
way po
white
nul |

man o

anber

bl ue

green nmap buoy synbol

anchor synbol
bel | synbol
di anond synbol
i amond synbol
down flag 1
down flag 2
dol I ar synbol
fish synbol
fuel synbol
horn synbol
house synbo

knife & fork symnbol

l'ight synbo
mug symbol

skull and crossbones synbo

square symbo
quare symnbo
buoy waypoi nt
int dot

wreck synbo

synbol

synbol (transparent)

ver board symnbo

map buoy synbol

green/red map buoy synbol

green/ white map buoy synbo
orange nmap buoy synbo

red map buoy synbol

red/ green map buoy synbol
red/white map buoy synbol

viol et map buoy symbol
white map buoy symnbol
whi te/ green map buoy synbol

white/red map buoy synbol

white
radi o

boat

canpg
restr
showe

drinki ng wat er synbol

telep
first
i nfor
par ki
park

pi cni
sceni
skiin

dot synbol
beacon synbo

ramp synmbo
round synbo
oons synbol
r synbol

hone synbo
ai d synbol
mati on synbol
ng symbo
synbol

¢ synbol

c area synbo
g synbol

swi nm ng synbol

dam s

controll ed area synbo

dange

restricted area synbol

nul |
bal |

ynbol
r synbol

synbol
synbol

Page 33

*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

001-00063-00 Rev. 3

sym car
sym deer

sym shpng_cart
sym_| odgi ng
sym m ne

symtrail _head
sym truck_stop
sym user_exit
sym flag
symcircle_x

Synmbol s for

sym.is_hwy

sym us_hwy
sym st _hwy
sym.m _nrkr
sym trcbck

sym gol f
symsm _cty
sym nmed_cty
symlrg_cty
sym freeway
symntl _hwy
sym cap_cty
sym anuse_pk
sym bow i ng
symcar_renta
sym car_repair
sym f ast f ood
sym fitness
sym novi e

sym nmuseum
sym phar macy
sym pi zza

sym post _ofc
symrv_park
sym schoo
sym st adi um
sym store

sym zoo

sym gas_pl us
sym f aces

sym ranp_int
sym st _int

sym wei gh_sttn
symtoll _booth
sym el ev_pt
Sym ex_no_srvc
sym geo_pl ace_nmm
sym geo_pl ace_wtr
sym geo_pl ace_| nd
sym bri dge
sym bui | di ng
sym cenetery
sym church
sym ci vi

sym crossi ng
sym_ hi st _t own
sym | evee
symmlitary
symoil _field
sym tunne

sym beach
sym f or est

sym sunmm t
symlrg_ranp_int
sym.lrg_ex_no_srvc
sym badge

sym car ds

170,
171,
172,
173,
174,
175,
176,
177,
178,
179,

land (group 1...

/*
/*

/*
/*
/*
/*
/*
/*
/*

car synbol
deer synbol
shoppi ng cart
| odgi ng synbol
m ne synbol
trail head symbol
truck stop symbol
user exit synbol
flag synbol

synbol

circle with x in the center

/* interstate hwy synbol

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

us hwy synbol
state hwy synbol
m | e marker synbol

TracBack (feet) synbol

gol f synbol

small city synbol
medi um city synbol
large city synbol
intl
intl national
capi tol
anusenment
bowl i ng synbol

car rental synbol
car repair synbol
fast food symbol
fitness synbol

nmovi e synbol
museum synbol

phar macy symnbol

pi zza synbol

post office synbol
RV park synbol
school synbol
stadi um synbol
dept. store symbol
zoo synbol

freeway hwy synbol
hwy synbol
city synbol
park synbol

(star)

conveni ence store synbol

live theater synbol

ramp intersection synbol

street

intersection symbol

i nspection/ wei gh station synbol

toll booth symbol

el evati on point synbol

exit w thout

bri dge synbol
bui I di ng synbol
cenetery synbol
church synbol

servi ces synbol
Geogr aphi c pl ace nane,
Geogr aphi c pl ace nane,
Geogr aphi c pl ace nane,

man- made
wat er
| and

civil location synbol
crossi ng synbol
hi stori cal

| evee synbol

t own synbol

mlitary |l ocation synbol

oil field synbol
tunnel synbol
beach synbol
forest synmbol
summi t synbol

large ranp intersection synbol

large exit w thout
police/official

servi ces snbl

badge synbol

ganbl i ng/ casi no synbol

Page 34

*/
*/

*/
*/
*/
*/
*/
*/
*/

001-00063-00 Rev. 3

sym snowsKki = 8251, /* snow skiing synbol */
sym i ceskate = 8252, /* ice skating synbol */
sym wr ecker = 8253, /* tow truck (wecker) synbol */

sym bor der 8254, /* border crossing (port of entry) */

% o e e e eeaoo-
Symbol s for aviation (group 2...16383-24575...bits 15-13=010).
___ *
sym ai r port = 16384, /* airport synbol */
sym.int = 16385, /* intersection synbol */
sym ndb = 16386, /* non-directional beacon synbol */
sym vor = 16387, /* VHF omi -range symbol */
sym hel i port = 16388, /* heliport synbol */
sym private = 16389, /* private field synbol */
symsoft_fld = 16390, /* soft field synbol */
symtall _tower = 16391, /* tall tower synbol */
sym short _t ower = 16392, /* short tower synbol */
sym gl i der = 16393, /* glider synbol */
sym ul tralight = 16394, /* ultralight synbol */
sym par achut e = 16395, /* parachute symbol */
symvortac = 16396, /* VOR/ TACAN symbol */
sym vordne = 16397, /* VOR-DMVE synbol */
sym f af = 16398, /* first approach fix */
sym.| om = 16399, /* localizer outer marker */
sym map = 16400, /* m ssed approach point */
sym tacan = 16401, /* TACAN symbol */
sym seapl ane = 16402, /* Seapl ane Base */

7.5. Product-Specific Data Types

7.5.1. D100_Wpt_Type

Example products: GPS 38, GPS 40, GPS 45, GPS 75 and GPS 1.

typedef struct

char ident[6]; /* identifier */
Semi circle_Type posn; /* position */
| ongwor d unused; /* should be set to zero */
char cmt [40] ; /* commrent */

} D100 _Wpt _Type;

7.5.2. D101 _Wpt_Type
Example products: GPSMAP 210 and GPSMAP 220 (both prior to version 4.00).

typedef struct

{

char ident[6]; /* identifier */
Semi circle_Type posn; /* position */
| ongwor d unused; /* should be set to zero */
char cmt [40] ; /* commrent */
fl oat dst; /* proximty distance (neters) */
byte snbl ; /* synbol id */

} D101 _Wpt Type;

The enumerated values for the “smbl” member of the D101 Wpt_Type are the same as those for Symbol_Type (see
Section 7.4.9 on page 32). However, since the “smbl” member of the D101_Wpt_Typeis only 8-bits (instead of 16-
bits), all Symbol_Type values whose upper byte is non-zero are unallowed in the D101_Wpt_Type.

The“dst” member isvalid only during the Proximity Waypoint Transfer Protocol.

Page 35 001-00063-00 Rev. 3

7.5.3. D102_Wpt_Type

Example products: GPSMAP 175, GPSMAP 210 and GPSMAP 220.

typedef struct

{

char ident[6];
Semi circle_Type posn;

| ongwor d unused;
char cmt [40] ;
fl oat dst;
Synbol _Type snbl ;

} DL02_Wpt _Type;

identifier

position

shoul d be set to zero
conment

proximty distance (nmeters)
synbol id

The“dst” member isvalid only during the Proximity Waypoint Transfer Protocol.

7.5.4. D103_Wpt_Type

Example products: GPS 12, GPS 12 XL, GPS 48 and GPS Il Plus.

typedef struct

char ident[6];
Semi circle_Type posn;

| ongwor d unused;
char cmt [40] ;
byte snbl ;
byte dspl ;

} D103_Wpt _Type;

/*

/*
/*

/*

identifier

position

shoul d be set to zero
conment

synbol id

di spl ay option

The enumerated values for the “smbl” member of the D103 Wpt_Type are shown bel ow:

enum

{

snbl _dot

snbl _house
snbl _gas

snbl _car

snbl _fish

snbl _boat

snbl _anchor
smbl _wr eck
snbl _exi t

snbl _skul |
snbl _fl ag

snbl _canp
snbl _circle_x
snbl _deer

snbl _1st _aid
snbl _back_track
b

OCoOoO~NOOTOA~WNEO

el e
rPonvroO

=
(&)]

/*
/*
/*

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

dot synbol

house synbol

gas synbol

car synbol

fish synbol

boat synbol
anchor synbol

wr eck symbol

exit synbol

skul | synbol
flag synbol

canp synbol
circle with x synbol
deer synbol

first aid synbol
back track synbol

The enumerated values for the “dspl” member of the D103 _Wpt_Type are shown below:

enum
{
dspl _nane =0,
dspl _none =1,
dspl _cmt =2
b

7.5.5. D104 Wpt_Type

Example products: GPS111.

/*
/*
/*

Di spl ay synbol w th waypoi nt nane
Di spl ay synmbol by itself
Di spl ay synmbol w th coment

Page 36

*/
*/
*/
*/
*/
*/

*/

*/
*/
*/
*/

*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/

001-00063-00 Rev. 3

typedef struct

{

char ident[6]; /* identifier */
Semi circle_Type posn; /* position */
| ongwor d unused; /* should be set to zero */
char cmt [40] ; /* commrent */
fl oat dst; /* proximty distance (neters) */
Synbol _Type snbl ; /* synbol id */
byte dspl ; /* display option */

} D104_Wpt _Type;

The enumerated values for the “dspl” member of the D104_Wpt_Type are shown below:

enum
{
dspl _snbl _none =0, /* Display symbol by itself */
dspl _snbl _only =1, /* Display symbol by itself */
dspl _snbl _nanme = 3, /* Display synmbol with waypoint name */
dspl _snbl _cmmt = 5, /* Display synmbol with conmrent */

}s

The“dst” member isvalid only during the Proximity Waypoint Transfer Protocol.

7.5.6. D105 Wpt_Type
Example products: StreetPilot (user waypoints).

typedef struct

Semi circle_Type posn; /* position */
Synbol _Type snbl ; /* synbol id */
/* char wpt _ident[]; null-term nated string */

} D105_Wpt _Type;

7.5.7. D106_Wpt_Type
Example products: StreetPilot (route waypoints).

typedef struct

byte wpt _cl ass; /* class */
byte subcl ass[13]; /* subcl ass */
Semi circle_Type posn; /* position */
Synbol _Type snbl ; /* synbol id */
/* char wpt _ident[]; null-term nated string */
/* char Ink_ident[]; null-term nated string */

} D106_Wpt _Type;

The enumerated values for the “wpt_class’ member of the D106_Wpt_Type are as follows:

Zexo: indicates a user waypoint (“subclass’ isignored).
Non-zero: indicates a non-user waypoint (“subclass’ must be valid).

For non-user waypoints (such as a city in the GPS map database), the GPS will provide a non-zero value in the
“wpt_cdlass’ member, and the “subclass’ member will contain valid data to further identify the non-user waypoint. I
the Host wishesto transfer this waypoint back to the GPS (as part of aroute), the Host must leave the “wpt_class’
and “subclass’ members unmodified. For user waypoints, the Host must ensure that the “wpt_class” member is zero,
but the “subclass” member will beignored and should be set to zero.

Page 37 001-00063-00 Rev. 3

The“Ink_ident” member provides a string that indicates the name of the path from the previous waypoint in the
route to this one. For example, “HIGHWAY 101" might be placed in “Ink_ident” to show that the path from the
previous waypoint to this waypoint is along Highway 101. The “Ink_ident” string may be empty (i.e., no characters
other than the null terminator), which indicates that no particular path is specified.

7.5.8. D107_Wpt_Type
Example products: GPS 12CX.

typedef struct

char ident[6]; /* identifier */
Semi circle_Type posn; /* position */
| ongwor d unused; /* should be set to zero */
char cmt [40] ; /* commrent */
byte snbl ; /* synbol id */
byte dspl ; /* display option */
fl oat dst; /* proximty distance (neters) */
byte col or; /* waypoi nt col or */

} DL107_Wpt _Type;

The enumerated values for the “smbl” member of the D107_Wpt_Type are the same as the the “smbl” member of
the D103 _Wpt_Type.

The enumerated values for the “dspl” member of the D107 _Wpt_Type are the same as the the “dspl” member of the
D103 Wpt_Type.

The enumerated values for the “ color” member of the D107_Wpt_Type are shown bel ow:

enum
clr_defaul t =0, /* Default waypoint color */
clr_red =1, /* Red */
clr_green = 2, /* Green */
clr_blue =3 /* Bl ue */
b

7.5.9. D108 Wpt_Type

Example products: GPSMAP 162/168, eMap, GPSMAP 295.

Page 38 001-00063-00 Rev. 3

typedef struct

/*
/*
/*
/*
/*
/*

{

byte

byte

byte

byte

Synbol _Type
byte

Semi circle_Type

fl oat
fl oat
fl oat
char
char
char
char
char
char
char
char

} D108_Wpt _Type;

wpt _cl ass;
col or;
dspl ;
attr;
snbl ;

subcl ass[18] ;

posn;
alt;

dpt h;

di st;
state[2];
ccl[2];
ident[];
coment [];
facility[];
city[];
addr[];

cross_road[];

/*

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

cl ass (see bel ow)

col or (see bel ow)

di spl ay options (see bel ow)
attributes (see bel ow)
waypoi nt synbol

subcl ass

32 bit semicircle

altitude in nmeters

depth in nmeters

proximty distance in neters
state

country code

variable length string
waypoi nt user conment
facility nane

city nane

addr ess nunber
intersecting road | abel

0
N
(]

NNARAPMNORNRPRRERPE

[
'

[ENEN
B

w o1 Y1
AN

1-25
1-51
1-51

*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/

The enumerated values for the “wpt_class’ member of the D108 Wpt_Type are defined as follows:

enum

{

USER WPT
AVTN_APT_WPT
AVTN_| NT_WPT
AVTN_NDB_WPT
AVTN_VOR_WPT

AVTN_ARWY_WPT
AVTN_AI NT_WPT
AVTN_ANDB_WPT

MAP_PNT_WPT
MAP_AREA WPT
MAP_| NT_WPT

MAP_ADRS_WPT

MAP_LABEL_WPT

MAP_LI NE_WPT
}s

0x00,
0x40,
0x41,
0x42,
0x43,
0x44,
0x45,
0x46,
0x80,
0x81,
0x82,
0x83,
0x84,
0x85,

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

User waypoi nt

Avi ation Airport waypoint

Avi ation Intersection waypoi nt
Avi ati on NDB waypoi nt

Avi ation VOR waypoi nt

Avi ation Airport Runway waypoi nt

Avi ation Airport Intersection
Avi ation Airport NDB waypoi nt
Map Poi nt waypoi nt

Map Area waypoi nt

Map | ntersection waypoint

Map Address waypoi nt

Map Label Waypoi nt

Map Li ne Waypoi nt

The*“color” member can be one of the following values:

enum { Bl ack,

Dar k_BlI ue,
Dar k_Gray,

Bl ue,

Def aul t _Col or

Dar k_Red,
Dar k_Magent a,

Magent a,
OxFF };

Dar k_Gr een, Dar k_Yel | ow,
Dar k_Cyan, Li ght _Gray,
G een, Yel | ow,
Cyan, Vi te,

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

The enumerated values for the “dspl” member of the D108_Wpt_Type are the same as the the “dspl” member of the
D103 Wpt_Type.

The“attr” member should be set to a value of 0x60.

The“subclass’ member of the D108 Wpt_Typeis used for map waypoints only, and should be set to 0x0000
0x00000000 OxXFFFFFFFF OxFFFFFFFF OXFFFFFFFF for other classes of waypoints.

The*“alt” and “dpth” members may or may not be supported on a given unit. A value of 1.0e25 in either of these
fieldsindicates that this parameter is not supported or is unknown for this waypoint.

Page 39

001-00063-00 Rev. 3

The“dist” member isused during the Proximity Waypoint Transfer Protocal only, and should be set to zero for
other cases.

The“comment” member of the D108 Wpt_Typeis used for user waypoints only, and should be an empty string for
other waypoint classes.

The“facility” and “city” members are used only for aviation waypoints, and should be empty strings for other
waypoint classes.

The“addr” member isonly valid for MAP_ADRS WPT class waypoints and will be an empty string otherwise.

The*“cross road” member isvalid only for MAP_INT_WPT class waypoints, and will be an empty string otherwise.

7.5.10. D150_Wpt_Type
Example products: GPS 150, GPS 155, GNC 250 and GNC 300.

typedef struct

char ident[6]; /* identifier */
char ccl[2]; /* country code */
byte wpt _cl ass; /* class */
Semi circle_Type posn; /* position */
int alt; /* altitude (meters) */
char city[24]; /* city */
char state[2]; /* state */
char nane[30] ; /* facility nane */
char cmt [40] ; /* commrent */

} D150_Wpt _Type;

The enumerated values for the “wpt_class’ member of the D150_Wpt_Type are shown bel ow:

enum
{
apt _wpt _cl ass =0, /* airport waypoint class */
int_wpt_class =1, /* intersection waypoint class */
ndb_wpt _cl ass = 2, /* NDB waypoi nt class */
vor _wpt _cl ass = 3, /* VOR waypoi nt cl ass */
usr_wpt _cl ass = 4, /* user defined waypoint class */
rwy_wpt _cl ass = 5, /* airport runway threshold waypoint class */
ai nt _wpt _cl ass = 6, /* airport intersection waypoint class */
| ocked_wpt _cl ass =7 /* 1 ocked waypoint class */

}s

The“locked_wpt_class’ code indicates that a route within a GPS contains an aviation database waypoint that the
GPS could not find in its aviation database (presumably because the aviation database was updated to a newer
version). The Host should never send the “locked_wpt_class’ code to the GPS.

The*“city,” “state,” “name,” and “cc’” members are invalid when the “wpt_class” member isequal to usr_wpt_class.
The“alt” member isvalid only when the “wpt_class” member isequal to apt_ wpt_class.

7.5.11. D151 Wpt_Type
Example products: GPS 55 AVD, GPS 89.

Page 40 001-00063-00 Rev. 3

typedef struct

{

char

Sem circle_Type

| ongwor d
char
float
char
char
char

int

char
char
byte

} D151 _Wpt _Type;

The enumerated values for the “wpt_class’ member of the D151 Wpt_Type are shown bel ow:

enum

apt _wpt _cl ass
vor _wpt _cl ass
usr_wpt _cl ass

| ocked_wpt _cl ass

}s

ident[6];
posn;
unused;
cmt [40] ;
dst;
nane[30] ;
city[24];
state[2];
alt;
ccl[2];
unused2;
wpt _cl ass

WO

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

/*
/*
/*

identifier

position

shoul d be set to zero
conment

proximty distance (neters)
facility nane

city

state

altitude (meters)

country code
shoul d be set to zero
cl ass

ai rport waypoint class

VOR waypoi nt cl ass

user defined waypoint class
| ocked waypoi nt cl ass

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/

The“locked_wpt_class’ code indicates that a route within a GPS contains an aviation database waypoint that the
GPS could not find in its aviation database (presumably because the aviation database was updated to a newer
version). The Host should never send the “locked_wpt_class’ code to the GPS.

The“dst” member isvalid only during the Proximity Waypoint Transfer Protocol.

The*“city,” “state,” “name,” and “cc’” members are invalid when the “wpt_class” member isequal to usr_wpt_class.
The“alt” member isvalid only when the “wpt_class” member isequal to apt_wpt_class.

7.5.12.

D152_Wpt_Type

Example products: GPS 90, GPS 95 AVD, GPS 95 XL and GPSCOM 190.

typedef struct

char

Semi circle_Type

| ongwor d
char

fl oat
char
char
char

int

char
char
byte

} D152 _Wpt _Type;

The enumerated values for the “wpt_class’ member of the D152_Wpt_Type are shown bel ow:

ident[6];
posn;
unused;
cmt [40] ;
dst;
nane[30] ;
city[24];
state[2];
alt;
ccl[2];
unused2;
wpt _cl ass

identifier

position

shoul d be set to zero
conment

proximty distance (neters)
facility nane

city

state

altitude (meters)
country code

shoul d be set to zero
cl ass

Page 41

*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/

001-00063-00 Rev. 3

enum

apt _wpt _cl ass
int_wpt_class
ndb_wpt _cl ass
vor _wpt _cl ass
usr_wpt _cl ass

| ocked_wpt _cl ass

abwhdREO

/*
/*
/*
/*
/*
/*

ai rport waypoint class

i ntersection
NDB waypoi nt
VOR way poi nt
user defined
| ocked waypoi

waypoi nt cl ass
cl ass

cl ass

waypoi nt cl ass
nt cl ass

*/
*/
*/
*/
*/
*/

}s

The“locked_wpt_class’ code indicates that a route within a GPS contains an aviation database waypoint that the
GPS could not find in its aviation database (presumably because the aviation database was updated to a newer
version). The Host should never send the “locked_wpt_class’ code to the GPS.

The“dst” member isvalid only during the Proximity Waypoint Transfer Protocol.

The*“city,” “state,” “name,” and “cc’” members are invalid when the “wpt_class” member isequal to usr_wpt_class.
The“alt” member isvalid only when the “wpt_class” member isequal to apt_ wpt_class.

7.5.13. D154 Wpt_Type
Example products: GPSMAP 195.

typedef struct

char ident[6]; /* identifier */
Semi circle_Type posn; /* position */
| ongwor d unused; /* should be set to zero */
char cmt [40] ; /* commrent */
fl oat dst; /* proximty distance (neters) */
char nane[30] ; /* facility name */
char city[24]; /* city */
char state[2]; /* state */
int alt; /* altitude (meters) */
char ccl[2]; /* country code */
char unused2; /* should be set to zero */
byte wpt _cl ass; /* class */
Synbol _Type snbl ; /* synbol id */

} D154_Wpt _Type;

The enumerated values for the “wpt_class’ member of the D154 Wpt_Type are shown bel ow:

enum
{
apt _wpt _cl ass =0, /* airport waypoint class */
int_wpt_class =1, /* intersection waypoint class */
ndb_wpt _cl ass = 2, /* NDB waypoi nt class */
vor _wpt _cl ass = 3, /* VOR waypoi nt cl ass */
usr_wpt _cl ass = 4, /* user defined waypoint class */
rwy_wpt _cl ass = 5, /* airport runway threshold waypoint class */
ai nt _wpt _cl ass = 6, /* airport intersection waypoint class */
andb_wpt _cl ass =17, /* airport NDB waypoi nt class */
sym wpt _cl ass = 8, /* user defined synbol-only waypoint class */
| ocked_wpt _cl ass =9 /* 1 ocked waypoint class */

}s

The“locked_wpt_class’ code indicates that a route within a GPS contains an aviation database waypoint that the
GPS could not find in its aviation database (presumably because the aviation database was updated to a newer
version). The Host should never send the “locked_wpt_class’ code to the GPS.

Page 42 001-00063-00 Rev. 3

The“dst” member isvalid only during the Proximity Waypoint Transfer Protocol.

The*“city,” “state,” “name,” and “cc’ members are invalid when the “wpt_class” member isequal to usr_wpt_class
or sym_wpt_class. The“alt” member isvalid only when the “wpt_class’ member is equal to apt_wpt_class.

7.5.14. D155 Wpt_Type
Example products: GPS 111 Pilot.

typedef struct

char ident[6];
Semi circle_Type posn;

| ongwor d unused
char cmt [40] ;
fl oat dst;

char name[30]
char city[24];
char state[2]
int alt;

char ccl[2];
char unused2;
byte wpt _cl ass
Synbol _Type snbl ;
byte dspl

} D155 _Wpt _Type;

/*
/*
/*
/*
/*
/*
/*

/*
/*
/*
/*

/*

identifier

position

shoul d be set to zero
conment

proximty distance (neters)
facility nane

city

state

altitude (meters)
country code

shoul d be set to zero

cl ass
synbol id
di spl ay option

The enumerated values for the “dspl” member of the D155 Wpt_Type are shown below:

enum

{
dspl _snbl _only
dspl _snbl _nane
dspl _snbl _cmmt
b

o n
g w

The enumerated values for the “wpt_class’ member of the D155 Wpt_Type are shown bel ow:

enum

apt _wpt _cl ass
int_wpt_class
ndb_wpt _cl ass
vor _wpt _cl ass
usr_wpt _cl ass
| ocked_wpt _cl ass

}s

R ONRO

/*
/*
/*

/*
/*
/*
/*
/*
/*

Di spl ay synbol
Di spl ay synbol
Di spl ay synbol

by itself
wi th waypoi nt name
wi th comment

ai rport waypoint class

i ntersection waypoint class
NDB waypoi nt cl ass

VOR waypoi nt cl ass

user defined waypoint class
| ocked waypoi nt cl ass

*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/

*/
*/
*/

*/
*/
*/
*/
*/
*/

The“locked_wpt_class’ code indicates that a route within a GPS contains an aviation database waypoint that the
GPS could not find in its aviation database (presumably because the aviation database was updated to a newer
version). The Host should never send the “locked_wpt_class’ code to the GPS.

The“dst” member isvalid only during the Proximity Waypoint Transfer Protocol.

The*“city,” “state,” “name,” and “cc’” members are invalid when the “wpt_class” member isequal to usr_wpt_class.
The“alt” member isvalid only when the “wpt_class” member isequal to apt_ wpt_class.

Page 43

001-00063-00 Rev. 3

7.5.15. D200_Rte_Hdr_Type
Example products: GPS 55 and GPS 55 AVD.

typedef byte D200_Rte_Hdr_Type; /* route nunber */

The route number contained in the D200_Rte Hdr_Type must be unique for each route.

7.5.16. D201_Rte_Hdr_Type
Example products: all products unless otherwise noted.

typedef struct
byte nmbr ; /* route nunber */

char cmt [20] ; /* commrent */
} D201_Rte_Hdr_Type

The“nmbr” member must be unique for each route. Some GPS units require a unique “cmnt” for each route, and
other GPS units do not. There is no mechanism available for the Host to determine whether a GPS requires a unique
“cmnt”, and the Host must be prepared to receive unique or non-unique “cmnt” from the GPS.

7.5.17. D202_Rte_Hdr_Type
Example products: StreetPilot.

typedef struct

/* char rte_ident[]; null-termnated string */
} D202_Rte_Hdr_Type

7.5.18. D210_Rte_Link_Type
Example products; GPSMAP 162/168, eMap, GPSMAP 295,

typedef struct

wor d cl ass; /* link class; see bel ow */
byte subcl ass[18]; /* subl cass */
/* char ident[]; variable length string */

b
The*“class’ member can be one of the following values:

enum
{
line
l'ink
net
direct
snap

}s

0
1
2
3
0

xFF

The“ident” member has a maximum length of 51 characters, including the terminating NULL.

If “class’ isset to “direct” or “snap”, subclass should be set to its default value of 0x0000 0x00000000 OxFFFFFFFF
OXFFFFFFFF OXFFFFFFFF.

Page 44 001-00063-00 Rev. 3

7.5.19. D300_Trk_Point_Type
Example products: all products unless otherwise noted.

typedef struct

{

Semi circle_Type posn; /* position */
| ongwor d time; [* tinme */
bool ean new_trk; /* new track segment? */

} D300_Trk_Poi nt _Type;

The“time’” member provides a timestamp for the track log point. Thistime is expressed as the number of seconds
since UTC 12:00 AM on December 31%, 1989.

When true, the “new_trk” member indicates that the track log point marks the beginning of a new track log segment.

7.5.20. D301_Trk_Point_Type
Example products. GPSMAP 162/168, eMap, GPSMAP 295.

typedef struct

{

Semi circle_Type posn; /* position */
| ongwor d time; [* tinme */
fl oat alt; /* altitude in meters */
fl oat dpt h; /* depth in meters */
bool ean new_trk; /* new track segment? */

} D301_Trk_Point _Type;

The“time” member provides atimestamp for the track log point. Thistime is expressed as the number of seconds
since UTC 12:00 AM on December 31%, 1989.

The‘alt’ and *dpth’ members may or may not be supported on a given unit. A value of 1.0e25 in either of these
fieldsindicates that this parameter is not supported or is unknown for this track point.

When true, the “new_trk” member indicates that the track log point marks the beginning of a new track log segment.

7.5.21. D310_Trk_Hdr_Type
Example products: GPSMAP 162/168, eMap, GPSMAP 295,

typedef struct

bool ean dspl ; /* display on the map? */
byte col or; /* color (same as D108) */
/* char trk_ident[]; null-termnated string */

} D310_Trk_Hdr_Type;

The ‘trk_ident” member has a maximum length of 51 charactersincluding the terminating NULL.

7.5.22. D400_Prx_Wpt_Type
Example products. GPS 55 and GPS 75.

Page 45 001-00063-00 Rev. 3

typedef struct
{
D100_Wt _Type wpt ; /* waypoi nt */

fl oat dst; /* proximty distance (neters) */
} D400_Prx_Wt _Type;

The“dst” member isvalid only during the Proximity Waypoint Transfer Protocol.

7.5.23. D403_Prx_Wpt_Type
Example products. GPS 12, GPS 12 XL and GPS 48.

typedef struct

{

D103_Wpt _Type wpt ; /* waypoi nt */
fl oat dst; /* proximty distance (neters) */
} D403_Prx_Wt _Type;

The“dst” member isvalid only during the Proximity Waypoint Transfer Protocol.

7.5.24. D450_Prx_Wpt_Type
Example products: GPS 150, GPS 155, GNC 250 and GNC 300.

typedef struct

{

int i dx; /* proximty index */
D150_Wt _Type wpt ; /* waypoi nt */
fl oat dst; /* proximty distance (neters) */

} D450_Prx_Wt _Type;

The“dst” member isvalid only during the Proximity Waypoint Transfer Protocol.

7.5.25. D500_Almanac_Type
Example products: GPS 38, GPS 40, GPS 45, GPS 55, GPS 75, GPS 95 and GPS 1.

typedef struct

int wn; /* week nunber (weeks) */
fl oat toa; /* al manac data reference tine (s) */
fl oat af 0; /* clock correction coefficient (s) */
fl oat af 1; /* clock correction coefficient (s/s) */
fl oat e; /* eccentricity - */
fl oat sqrta; /* square root of semi-nmjor axis (a) (nmr*1/2) */
fl oat no; /* mean anomaly at reference tine (r) */
fl oat w, /* argument of perigee (r) */
fl oat ongO; /* right ascension (r) */
fl oat odot ; /* rate of right ascension (r/s) */
fl oat i; /* inclination angle (r) */

} D500_Al manac_Type;

7.5.26. D501_Almanac_Type
Example products: GPS 12, GPS 12 XL, GPS 48, GPS || Plusand GPS 1.

Page 46 001-00063-00 Rev. 3

typedef struct

{
int wn; /* week nunber (weeks) */
fl oat toa; /* al manac data reference tine (s) */
fl oat af 0; /* clock correction coefficient (s) */
fl oat af 1; /* clock correction coefficient (s/s) */
fl oat e; /* eccentricity - */
fl oat sqrta; /* square root of semi-nmjor axis (a) (nmr*1/2) */
fl oat no; /* mean anomaly at reference tine (r) */
fl oat w, /* argument of perigee (r) */
fl oat ongO; /* right ascension (r) */
fl oat odot ; /* rate of right ascension (r/s) */
fl oat i; /* inclination angle (r) */
byte hl t h; /* al manac health */
} D501_Al manac_Type;

7.5.27. D550_Almanac_Type

Example products. GPS 150, GPS 155, GNC 250 and GNC 300.

typedef struct
{
char svi d; /* satellite id */
int wn; /* week nunber (weeks) */
fl oat toa; /* al manac data reference tine (s) */
fl oat af 0; /* clock correction coefficient (s) */
fl oat af 1; /* clock correction coefficient (s/s) */
fl oat e; /* eccentricity (-) */
fl oat sqrta; /* square root of semi-nmjor axis (a) (nmr*1/2) */
fl oat no; /* mean anomaly at reference tine (r) */
fl oat w, /* argument of perigee (r) */
fl oat ongO; /* right ascension (r) */
fl oat odot ; /* rate of right ascension (r/s) */
fl oat i; /* inclination angle (r) */

} D550_Al manac_Type;

The“svid” member identifies a satellite in the GPS constellation as follows: PRN-01 through PRN-32 areindicated
by “svid” equal to O through 31, respectively.

7.5.28. D551 _Almanac_Type
Example products: GPS 150 XL, GPS 155 XL, GNC 250 XL and GNC 300 XL.

typedef struct

{

char svi d; /* satellite id */
int wn; /* week nunber (weeks) */
fl oat toa; /* al manac data reference tine (s) */
fl oat af 0; /* clock correction coefficient (s) */
fl oat af 1; /* clock correction coefficient (s/s) */
fl oat e; /* eccentricity (-) */
fl oat sqrta; /* square root of semi-nmjor axis (a) (nmr*1/2) */
fl oat no; /* mean anomaly at reference tine (r) */
fl oat w, /* argument of perigee (r) */
fl oat ongO; /* right ascension (r) */
fl oat odot ; /* rate of right ascension (r/s) */
fl oat i; /* inclination angle (r) */
byte hl t h; /* al manac health bits 17:24 (coded) */

} D551_Al manac_Type;

The“svid” member identifies a satellite in the GPS congtellation as follows: PRN-01 through PRN-32 areindicated
by “svid” equal to O through 31, respectively.

Page 47 001-00063-00 Rev. 3

7.5.29. D600_Date _Time_Type
Example products: al products unless otherwise noted.

typedef struct

{

byte nmont h; /* month (1-12) */
byte day; /* day (1-31) */
wor d year ; /* year (1990 means 1990) */
int hour ; /* hour (0-23) */
byte m nut e; /* mnute (0-59) */
byte second; /* second (0-59) */

} D600_Date_Ti me_Type;

The D600_Date Time_Type contains the UTC date and UTC time.

7.5.30. D700_Position_Type
Example products: al products unless otherwise noted.

typedef Radi an_Type D700_Position_Type;

7.5.31. D800_Pvt_Data_Type
Example products. GPSI11I and StreetPilot.

typedef struct

fl oat alt; /* altitude above WGS 84 ellipsoid (nmeters) */
fl oat epe; /* estimated position error, 2 sigma (neters) */
fl oat eph; /* epe, but horizontal only (neters) */
fl oat epv; /* epe, but vertical only (meters) */
int fix; /* type of position fix */
doubl e tow; /* tinme of week (seconds) */
Radi an_Type posn; /* latitude and | ongitude (radi ans) */
fl oat east ; /* velocity east (neters/second) */
fl oat north; /* velocity north (neters/second) */
fl oat up; /* velocity up (et ers/ second) */
fl oat msl _hght ; /* height of WGS 84 ellipsoid above MSL (meters) */
int | eap_scnds; /* difference between GPS and UTC (seconds) */
| ong wn_days; /* week nunber days */

} D800_Pvt _Data_Type;

The*“alt” parameter provides the altitude above the WGS 84 dlipsoid. To find the altitude above mean sea level, add
“md_hght” to “alt” (“md_hght” givesthe height of the WGS 84 dllipsoid above mean sea level at the current
position).

The“tow” parameter provides the number of seconds (excluding leap seconds) since the beginning of the current
week, which begins on Sunday at 12:00 AM (i.e., midnight Saturday night-Sunday morning). The “tow” parameter
is based on Universal Coordinated Time (UTC), except UTC is periodically corrected for leap seconds while “tow”
isnot corrected for leap seconds. To find UTC, subtract “leap _scnds’ from “tow.” Since this may cause a negative
result for the first few seconds of the week (i.e., when “tow” islessthan “leap_scnds’), care must be taken to
properly trandate this negative result to a positive time value in the previous day. Also, since “tow” is afloating
point number and may contain fractional seconds, care must be taken to properly round off when using “tow” in
integer conversions and cal culations.

Page 48 001-00063-00 Rev. 3

The“wn_days’ parameter provides the number of days that have occurred from UTC December 31%, 1989 to the
beginning of the current week (thus, “wn_days’ always represents a Sunday). To find the total number of days that
have occurred from UTC December 31%, 1989 to the current day, add “wn_days’ to the number of days that have
occurred in the current week (as calculated from the “tow” parameter).

The enumerated values for the “fix” member of the D800_Pvt_Data Type are shown below. It isimportant for the
Host to inspect this value to ensure that other data membersin the D800 _Pvt_Data Type arevalid. Noindication is
given asto whether the GPSisin simulator mode versus having an actual position fix.

enum
unusabl e =0, /* failed integrity check */
invalid =1, /* invalid or unavail able */
2D = 2, /* two di nmensional */
3D = 3, /* three di nensional */
2D diff = 4, /* two dinensional differential */
=5 /* three dinensional differential */

3D diff
}s

Page 49 001-00063-00 Rev. 3

8.

8.1.

Appendixes

GPS Product IDs

The table below provides the Product 1D numbers for many GARMIN GPS products.

Product Name ID
GNC 250 52
GNC 250 XL 64
GNC 300 33
GNC 300 XL 98
GPS 12 77
GPS 12 87
GPS 12 96
GPS 12 XL 77
GPS 12 XL 96
GPS 12 XL Chinese 106
GPS 12 XL Japanese 105
GPS 120 47
GPS 120 Chinese 55
GPS 120 XL 74
GPS 125 Sounder 61
GPS 126 95
GPS 126 Chinese 100
GPS 128 95
GPS 128 Chinese 100
GPS 150 20
GPS 150 XL 64
GPS 155 34
GPS 155 XL 98
GPS 165 34
GPS 38 41
GPS 38 Chinese 56
GPS 38 Japanese 62
GPS 40 31
GPS 40 41
GPS 40 Chinese 56
GPS 40 Japanese 62
GPS 45 31
GPS 45 41
GPS 45 Chinese 56
GPS 45 XL 41
GPS 48 96
GPS 50 7

GPS 55 14
GPS55AVD 15
GPS 65 18
GPS 75 13
GPS 75 23
GPS 75 42
GPS 85 25
GPS 89 39
GPS 90 45
GPS 92 112
GPS 95 24
GPS 95 35
GPS 95 AVD 22
GPS 95 AVD 36
GPS 95 XL 36
GPSII 59
GPSII Plus 73
GPSII Plus 97
GPS I 72
GPSIII Pilot 71
GPSCOM 170 50
GPSCOM 190 53
GPSMAP 130 49
GPSMAP 130 Chinese 76
GPSMAP 135 Sounder 49
GPSMAP 175 49
GPSMAP 195 48
GPSMAP 205 29
GPSMAP 205 44
GPSMAP 210 29
GPSMAP 215 88
GPSMAP 220 29
GPSMAP 225 88
GPSMAP 230 49
GPSMAP 230 Chinese 76
GPSMAP 235 Sounder 49

Page 50

001-00063-00 Rev. 3

8.2.

GPS Product Protocol Capabilities

The table below provides the protocol capahilities of many GARMIN GPS products that do not implement the
Protocol Capabilities Protocol. Column 1 contains the applicable Product 1D number, and Column 2 contains the
applicabl e software version number. The remaining columns show the product-specific protocol 1Ds and data type
IDsfor the types of protocolsindicated (Wpt, Rte, Trk, Alm, Prx, and PVT). Within these remaining columns,
protocol IDs are prefixed with P, L, or A (Physical, Link, or Application) and data type IDs are prefixed with D.

The presence of a product in the table below indicates that the product did not originally implement the Protocol

Capabilities Protocol (A001). However, if the Host detects that one of these products now provides Protocol

Capabilities Protocol data (due to a new version of software loaded in the product), then Protocol Capahilities
Protocol data shall take precedence over the data provided in the table below.

The following protocols are omitted from the table because all products in the table implement them:

PO00
A000
A600
A700

Default Physical Protocol
Product Data Protocol
Date and Time Initialization Protocol
Position Initialization Protocol

All products in the table use the D600 data type in conjunction with the A600 protocol; similarly, all productsin the
table use the D700 data type in conjunction with the A700 protocol. The A800/D800 protocol and data type are
omitted from the table because none of the productsin the table implements PVT Data transfer.

Note: all numbers arein decimal format.

ID Version Link | Cmnd Wpt Rte Trk Prx Alm

7 All| LO01| AO010| Al00,D100| AZ200, D200, D100 A500, D500
25 All| LO01| AO010| A100,D100| AZ200, D200, D100 | A300, D300 | A400, D400 | A500, D500
13 All'| LO01| AO010| A100,D100| AZ200, D200, D100 | A300, D300 | A400, D400 | A500, D500
14 All'| LO01| AO010| Al100,D100| AZ200, D200, D100 A400, D400 | A500, D500
15 All| LO01| AO010| Al100,D151| AZ200, D200, D151 A400, D151 | A500, D500
18 All'| LO01| AO010| A100,D100| AZ200, D200, D100 | A300, D300 | A400, D400 | A500, D500
20 All'| LO02| AO11l| A100,D150| AZ200, D201, D150 A400, D450 | A500, D550
22 All'| LO01| AO010| A100,D152| AZ200, D200, D152 | A300, D300 | A400, D152 | A500, D500
23 All| LO01| AO010| A100,D100| AZ200, D200, D100 | A300, D300 | A400, D400 | A500, D500
24 All'| LO01| AO010| A100,D100| AZ200, D200, D100 | A300, D300 | A400, D400 | A500, D500
29 <4.00| LOO1| AO010| A100, D101| AZ200, D201, D101 | A300, D300 | A400, D101 | A500, D500
29 >=4.00| LOO1| AO010| A100, D102 | AZ200, D201, D102 | A300, D300 | A400, D102 | A500, D500
31 All'| LO01| AO010| A100,D100| AZ200, D201, D100 | A300, D300 A500, D500
33 All'| LO02| AO11l| A100,D150| AZ200, D201, D150 A400, D450 | A500, D550
34 All'| L0O02| AO11| A100,D150| AZ200, D201, D150 A400, D450 | A500, D550
35 All| LO01| AO010| A100,D100| AZ200, D200, D100 | A300, D300 | A400, D400 | A500, D500
36 <3.00| LOO1| AO010| A100, D152| A200, D200, D152 | A300, D300 | A400, D152 | A500, D500
36 >=3.00| LOO1| AO010| A100,D152| AZ200, D200, D152 | A300, D300 A500, D500
39 All'| LO01| AO010| A100,D151| AZ200, D201, D151 | A300, D300 A500, D500

Page 51

001-00063-00 Rev. 3

41 All | L0O01| AO010| A100,D100| A200, D201, D100 |A300, D300 A500, D500
42 All | LO01| AO010| A100,D100| A200, D200, D100 | A300, D300 | A400, D400 | A500, D500
44 All | L001| AO010| A100,D101| A200, D201, D101 | A300, D300 | A400, D101 | A500, D500
45 All | L0O01| AO010| A100,D152| A200, D201, D152 |A300, D300 A500, D500
47 All | L0O01| AO010| A100,D100| A200, D201, D100 |A300, D300 A500, D500
48 All | L0O01| AO010| A100,D154| A200, D201, D154 | A300, D300 A500, D501
49 All | L001| AO010| A100,D102| A200, D201, D102 | A300, D300 | A400, D102 | A500, D501
50 All | L001| AO010| A100,D152| A200, D201, D152 |A300, D300 A500, D501
52 All | L002| AO011| A100,D150| A200, D201, D150 A400, D450 | A500, D550
53 All | L0O01| AO010| A100,D152| A200, D201, D152 |A300, D300 A500, D501
55 All | L0O01| AO010| A100,D100| A200, D201, D100 |A300, D300 A500, D500
56 All | L0O01| AO010| A100,D100| A200, D201, D100 |A300, D300 A500, D500
59 All | L0O01| AO010| A100,D100| A200, D201, D100 |A300, D300 A500, D500
61 All | L0O01| AO010| A100,D100| A200, D201, D100 |A300, D300 A500, D500
62 All | L001| AO010| A100,D100| A200, D201, D100 |A300, D300 A500, D500
64 All | L002| AO011| A100,D150| A200, D201, D150 A400, D450 | A500, D551
71 All | L0O01| AO010| A100,D155| A200, D201, D155 |A300, D300 A500, D501
72 All | L0O01| AO010| A100,D104| A200, D201, D104 | A300, D300 A500, D501
73 All | L0O01| AO010| A100,D103| A200, D201, D103 |A300, D300 A500, D501
74 All | LO01| AO010| A100,D100| A200, D201, D100 |A300, D300 A500, D500
76 All | L001| AO010| A100,D102| A200, D201, D102 | A300, D300 | A400, D102 | A500, D501
77 <301| LO01| AO010| A100, D100| AZ200, D201, D100 | A300, D300 | A400, D400 | A500, D501
77|>=3.01,<350| LO01| AO010| A100,D103| AZ200, D201, D103 | A300, D300 | A400, D403 | A500, D501
77 |>=350,<361| LO001| AO010| A100,D103| AZ200, D201, D103 | A300, D300 A500, D501
77 >=361| LO01| A010| A100, D103| A200, D201, D103 |A300, D300 | A400, D403 | A500, D501
87 All | L001| AO010| A100,D103| A200, D201, D103 |A300, D300 | A400, D403 | A500, D501
88 All | L001| AO010| A100,D102| A200, D201, D102 | A300, D300 | A400, D102 | A500, D501
95 All | L001| AO010| A100,D103| A200, D201, D103 |A300, D300 | A400, D403 | A500, D501
96 All | L001| AO010| A100,D103| A200, D201, D103 |A300, D300 | A400, D403 | A500, D501
97 All | L0O01| AO010| A100,D103| A200, D201, D103 |A300, D300 A500, D501
98 All | L002| AO011| A100,D150| A200, D201, D150 A400, D450 | A500, D551
100 All | L001| AO010| A100,D103| A200, D201, D103 |A300, D300 | A400, D403 | A500, D501
105 All | L001| AO010| A100,D103| A200, D201, D103 |A300, D300 | A400, D403 | A500, D501
106 All | L001| AO010| A100,D103| A200, D201, D103 |A300, D300 | A400, D403 | A500, D501
112 All | L001| AO010| A100,D152| A200, D201, D152 | A300, D300 A500, D501
8.3. Frequently Asked Questions
8.3.1. Undocumented Protocols

Q: The Internet has information about additional protocols and extensions that are not described in the document.
Why have these been | eft out?

A: Part of the goal of the document is to separate what GARMIN thinksis safe versus what is unsafe when
interfacing to our GPS products. Any items left out of the document are considered to be “testing aids’ for use by
our engineering and manufacturing departments only. As such, we do not require all products to have all testing
aids, nor do we require the testing aids to be implemented in the same way in every product. In fact, thereisawide

Page 52

001-00063-00 Rev. 3

variation in these testing aids. Worse, some testing aids may have side effects that are undesirable for anything but
testing.

8.3.2. Hexadecimal vs. Decimal Numbers
Q: Why doesn’t the document contain hexadecimal humbers?

A: Having both decimal and hexadecimal numbers introduces dual-maintenance, which is twice the work and prone
to errors. Therefore, we chose to use a single numbering system. We chose decimal because it made the overall
document easier to understand.

8.3.3. Length of Received Data Packet

Q: Should my program look at the length of an incoming packet to detect which waypoint format is being sent from
the GPS?

A: Prior to having a definitive interface specification, this was probably the best approach. However, now you
should follow the recommendations of the specification and use the Protocol Capabilities Protocol or the lookup
tablein Section 8.2 to explicitly determine the waypoint format. Validating data based on length isundesirable
because: 1) it doesn’t validate the integrity of the data (thisis done at the link layer using a checksum); and 2) there
is some possibility that the GPS will transmit a few extra bytes at the end of the data, which would invalidate an
otherwise valid packet (you can safely ignore the extra bytes).

8.3.4. Waypoint Creation Date
Q: Isn't the “unused” longword in waypoint formats really the date of waypoint creation?

A: Only afew of our very early products used thisfield for creation date. All other productstreat it as“unused.”
Your program should ignore this field when receiving and set it to zero when transmitting.

8.3.5. Almanac Data Parameters
Q: What is meaning of the almanac data parameters such aswn, toa, af0, etc.?

A: No definitions for these parameters are given other than what is provided in the comments. In most cases, a

program should simply upload and download this data. Otherwise, the comments should suffice for most
applications.

8.3.6. Example Code
Q: Where can | find example code (e.g., for converting time and position formats)?

A: We are currently unable to take the time to compile this information.

Page 53 001-00063-00 Rev. 3

8.3.7. Sample Data Transfer Dumps

Q: Where can | find some sample data transfer dumps?

A: We are currently unable to take the time to compile this information.

8.3.8. Additional Tables

Q: Why doesn’t the document contain additional tables (e.g., an additional table in Section 8.1 sorted by Product
ID)?

A: We bdlieve the document contains all the necessary information with minimal duplication. Additional sorting
may be performed by the copy/pasting the data into your favorite spreadshest.

8.3.9. Software Versions
Q: Why doesn’t the table in Section 8.1 include an indication of software version?

A: We are currently unable to take the time to compile this information. The purpose of the table isto alow you to

determine the Product IDs for the products you wish to support. For example, to support a GPS 12 you must support
Product IDs 77, 87, and 96 and their associated protocols from the table in Section 8.2.

Page 54 001-00063-00 Rev. 3

