Definition | Ratio |
---|---|
sin(x)= (exi-e-xi)/(2i) | tan(x)= sin(x)/cos(x) |
cos(x)= (exi+e-xi)/2 | cot(x)= cos(x)/sin(x) |
Reciprocal | ||
---|---|---|
sin(x)= 1/csc(x) | csc(x)= 1/sin(x) | sin(x)csc(x)=1 |
cos(x)= 1/sec(x) | sec(x)= 1/cos(x) | cos(x)sec(x)=1 |
tan(x)= 1/cot(x) | cot(x)= 1/tan(x) | tan(x)cot(x)=1 |
Pythagorean | ||
---|---|---|
sin²(x)+cos²(x)=1 | csc²(x)-cot²(x)=1 | sec²(x)-tan²(x)=1 |
sin²(x)= 1-cos²(x) | csc²(x)= cot²(x)+1 | sec²(x)= tan²(x)+1 |
cos²(x)= 1-sin²(x) | cot²(x)= csc²(x)-1 | tan²(x)= sec²(x)-1 |
Cofunction | ||
---|---|---|
sin(x)= cos(x-π/2) = cos(π/2-x) | cos(x)= sin(π/2±x) = cos(-x) | tan(x)= cot(π/2-x) = -cot(x±π/2) |
csc(x)= sec(x-π/2) = sec(π/2-x) | sec(x)= csc(π/2±x) = sec(-x) | cot(x)= tan(π/2-x) = -tan(x±π/2) |
Sum/Difference |
---|
sin(A±B)= sin(A)cos(B)±cos(A)sin(B) |
cos(A±B)= cos(A)cos(B)∓sin(A)sin(B) |
tan(A±B)= [tan(A)±tan(B)]/[1∓tan(A)tan(B)] |
Product/Sum | Sum/Product |
---|---|
sin(A)cos(B)= [sin(A+B)+sin(A-B)]/2 | sin(A)±sin(B)= 2sin[(A±B)/2]cos[(A∓B)/2] |
cos(A)sin(B)= [sin(A+B)-sin(A-B)]/2 | |
sin(A)sin(B)= [cos(A-B)-cos(A+B)]/2 | cos(A)+cos(B)= 2cos[(A+B)/2]cos[(A-B)/2] |
cos(A)cos(B)= [cos(A+B)+cos(A-B)]/2 | cos(A)-cos(B)= -2sin[(A+B)/2]sin[(A-B)/2] |
Double Angle | |
---|---|
sin(2x)= 2sin(x)cos(x) | |
cos(2x)= cos²(x)-sin²(x) = 2cos²(x)-1 = 1-2sin²(x) | |
tan(2x)= 2tan(x)/[1-tan²(x)] = 2/[cot(x)-tan(x)] = 2cot(x)/[cot²(x)-1] | x ≠ (1+2k)π/4 |
Triple Angle | |
---|---|
sin(3x)= 3sin(x)-4sin³(x) | |
cos(3x)= 4cos³(x)-3cos(x) | |
tan(3x)= [3tan(x)-tan³(x)]/[1-3tan²(x)] | x ≠ (1+2k)π/6 |
Power Reducing | |
---|---|
sin²(x)= [1-cos(2x)]/2 | |
cos²(x)= [1+cos(2x)]/2 | |
tan²(x)= [1-cos(2x)]/[1+cos(2x)] = 1-2tan(x)/tan(2x) | x ≠ (1+2k)π/2 |
Half Angle | ||
---|---|---|
sin(x/2)= ±√([1-cos(x)]/2) | use (-) when x/2 is in Quadrant 3 or 4 | |
cos(x/2)= ±√([1+cos(x)]/2) | use (-) when x/2 is in Quadrant 2 or 3 | |
tan(x/2)= ±√([1-cos(x)]/[1+cos(x)]) | use (-) when x/2 is in Quadrant 2 or 4 | x ≠ (1+2k)π |
Sine Law | Cosine Law |
---|---|
sin(A)/a = sin(B)/b = sin(C)/c | a²= b²+c²-(2bc)cos(A) |
b²= a²+c²-(2ac)cos(B) | |
c²= a²+b²-(2ab)cos(C) |
Definition | Ratio |
---|---|
sinh(x)= (ex-e-x)/2 | tanh(x)= sinh(x)/cosh(x) |
cosh(x)= (ex+e-x)/2 | coth(x)= cosh(x)/sinh(x) |
Reciprocal | ||
---|---|---|
sinh(x)= 1/csch(x) | csch(x)= 1/sinh(x) | sinh(x)csch(x)=1 |
cosh(x)= 1/sech(x) | sech(x)= 1/cosh(x) | cosh(x)sech(x)=1 |
tanh(x)= 1/coth(x) | coth(x)= 1/tanh(x) | tanh(x)coth(x)=1 |
Pythagorean | ||
---|---|---|
cosh²(x)-sinh²(x)=1 | coth²(x)-csch²(x)=1 | sech²(x)+tanh²(x)=1 |
cosh²(x)= sinh²(x)+1 | coth²(x)= csch²(x)+1 | sech²(x)= 1-tanh²(x) |
sinh²(x)= cosh²(x)-1 | csch²(x)= coth²(x)-1 | tanh²(x)= 1-sech²(x) |
Sum/Difference |
---|
sinh(A±B)= sinh(A)cosh(B)±cosh(A)sinh(B) |
cosh(A±B)= cosh(A)cosh(B)±sinh(A)sinh(B) |
tanh(A±B)= [tanh(A)±tanh(B)]/[1±tanh(A)tanh(B)] |
Product/Sum | Sum/Product |
---|---|
sinh(A)cosh(B)= [sinh(A+B)+sinh(A-B)]/2 | sinh(A)±sinh(B)= 2sinh[(A±B)/2]cosh[(A∓B)/2] |
cosh(A)sinh(B)= [sinh(A+B)-sinh(A-B)]/2 | |
sinh(A)sinh(B)= [cosh(A+B)-cosh(A-B)]/2 | cosh(A)+cosh(B)= 2cosh[(A+B)/2]cosh[(A-B)/2] |
cosh(A)cosh(B)= [cosh(A+B)+cosh(A-B)]/2 | cosh(A)-cosh(B)= 2sinh[(A+B)/2]sinh[(A-B)/2] |
Double Angle |
---|
sinh(2x)= 2sinh(x)cosh(x) |
cosh(2x)= cosh²(x)+sinh²(x) = 2sinh²(x)+1 = 2cosh²(x)-1 |
tanh(2x)= 2tanh(x)/[1+tanh²(x)] = 2/[tanh(x)+coth(x)] = 2coth(x)/[coth²(x)+1] |
Triple Angle |
---|
sinh(3x)= sinh³(x)+3cosh²(x)sinh(x) |
cosh(3x)= cosh³(x)+3sinh²(x)cosh(x) |
tanh(3x)= [3tanh(x)+tanh³(x)]/[1+3tanh²(x)] |
Power Reducing |
---|
sinh²(x)= [cosh(2x)-1]/2 |
cosh²(x)= [cosh(2x)+1]/2 |
tanh²(x)= [cosh(2x)-1]/[cosh(2x)+1] = 2tanh(x)/tanh(2x)-1 |
Inverse Hyperbolic Functions | |
---|---|
arcsinh(x)= ln[x+√(x²+1)] | x is a real number |
arccosh(x)= ln[x±√(x²-1)] | x > 1 |
arctanh(x)= ln[(1+x)/(1-x)]/2 | -1 < x < 1 |
arccsch(x)= ln[(1±√(x²+1))/x] | x ≠ 0; use (+) when x > 0; use (-) when x < 0 |
arcsech(x)= ln[(1±√(1-x²))/x] | 0 < x < 1 |
arccoth(x)= ln[(x+1)/(x-1)]/2 | abs(x) > 1 |
Derivatives | ||||||
---|---|---|---|---|---|---|
Power Rule | Product Rule | Quotient Rule | Exponential, Logarithmic | |||
un | u v | u/v | eu | au | ln(u) | loga(u) |
nun-1u′ | uv′+vu′ | (u′v-v′u)/v² | euu′ | auln(a)u′ | u′/u | u′/[u ln(a)] |
Derivatives of Trigonometric Functions | |||||
---|---|---|---|---|---|
sin(u) | cos(u) | tan(u) | csc(u) | sec(u) | cot(u) |
cos(u)u′ | -sin(u)u′ | sec²(u)u′ | -csc(u)cot(u)u′ | sec(u)tan(u)u′ | -csc²(u)u′ |
Derivatives of Inverse Trigonometric Functions | |||||
---|---|---|---|---|---|
arcsin(u) | arccos(u) | arctan(u) | arccsc(u) | arcsec(u) | arccot(u) |
u′/√(1-u²) | -u′/√(1-u²) | u′/(1+u²) | -u′/[u √(u²-1)] | u′/[u √(u²-1)] | -u′/(1+u²) |
Derivatives of Hyperbolic Functions | |||||
---|---|---|---|---|---|
sinh(u) | cosh(u) | tanh(u) | csch(u) | sech(u) | coth(u) |
cosh(u)u′ | sinh(u)u′ | sech²(u)u′ | -csch(u)coth(u)u′ | -sech(u)tanh(u)u′ | -csch²(u)u′ |
Derivatives of Inverse Hyperbolic Functions | |||||
---|---|---|---|---|---|
arcsinh(u) | arccosh(u) | arctanh(u) | arccsch(u) | arcsech(u) | arccoth(u) |
u′/√(1+u²) | u′/√(u²-1) | u′/(1-u²) | -u′/[abs(u)√(u²+1)] | -u′/[u √(1-u²)] | u′/(1-u²) |
Basic Forms | ||||
---|---|---|---|---|
undu | u dv | eudu | du/u | audu |
un+1/(n+1), n ≠ -1 | uv - ∫(v du) | eu | ln(u) | au/ln(a), a > 0, a ≠ 1 |
Basic Trigonometric Forms | |||
---|---|---|---|
tan(u)du | cot(u)du | sec(u)du | csc(u)du |
ln[abs(sec(u))] | ln[abs(sin(u))] | ln[abs(sec(u)+tan(u))] | ln[abs(csc(u)-cot(u))] |
Basic Hyperbolic Forms | |||
---|---|---|---|
tanh(u)du | coth(u)du | sech(u)du | csch(u)du |
ln[cosh(u)] | ln[abs(sinh(u))] | arctan[abs(sinh(u))] | ln[abs(tanh(u/2))] |
More Basic Forms | ||
---|---|---|
du/(u²+a²) | du/(u²-a²), u² ≠ a² | du/(a²-u²), u² ≠ a² |
arctan(u/a)/a, a ≠ 0 | ln[abs((u-a)/(u+a))]/(2a), a ≠ 0 | ln[abs((a+u)/(a-u))]/(2a), a ≠ 0 |
More Basic Forms | |
---|---|
du/√(a²-u²), a² > u² | du/[u √(u²-a²)], u² > a² > 0 |
arcsin(u/a) | arcsec(a/u)/a |
du/[(a+bu)(m+nu)] | (u du)/[(a+bu)(m+nu)] |
ln[(m+nu)/(a+bu)]/(an-bm), an ≠ bm | [ln[a+bu](a/b)-ln[m+nu](m/n)]/(an-bm), an ≠ bm |
Exponential Forms | u eaudu | uneaudu | eausin(bu)du | eaucos(bu)du |
---|---|---|---|
[(au-1)eau]/a² | [uneau]/a - (n/a)∫(un-1eaudu) | eau[a sin(bu) - b cos(bu)]/(a²+b²) | eau[a cos(bu) - b sin(bu)]/(a²+b²) |
Logarithmic Forms | ||
---|---|---|
ln(u)du | du/[u ln(u)] | unln(u)du |
u ln(u) - u | ln[abs(ln(u))] | un+1[(n+1)ln(u)-1]/(n+1)², n ≠ -1 |
Properties |
---|
L{f(t)}(s) = 0∞∫( e-stf(t)dt ) = F(s) |
L-1{F(s)}(t) = f(t) |
L{eatf(t)}(s) = F(s-a) |
L{f′(t)}(s) = sF(s)-f(0) |
L{f″(t)}(s) = s²F(s)-sf(0)-f′(0) |
L{f(n)(t)}(s) = snF(s)-sn-1f(0)-sn-2f′(0)-...-sf(n-2)(0)-f(n-1)(0) |
L{tnf(t)}(s) = (-1)nF(n)(s) |
f(t)*g(t) = 0t∫( f(t-v)g(v)dv ) |
L{f(t)*g(t)}(s) = F(s)G(s) |
L-1{F(s)G(s)}(t) = f(t)*g(t) |
Brief Table | |
---|---|
f(t) | F(s) |
1 | 1/s; s > 0 |
eat | 1/(s-a); s > a |
tn; n=1,2,3,... | n!/(sn+1); s > 0 |
eattn; n=1,2,3,... | n!/[(s-a)n+1]; s > a |
sin(bt) | b/(s²+b²); s > 0 |
cos(bt) | s/(s²+b²); s > 0 |
eatsin(bt) | b/[(s-a)²+b²]; s > a |
eatcos(bt) | (s-a)/[(s-a)²+b²]; s > a |
t sin(bt) | 2bs/(s²+b²)² |
t cos(bt) | (s²-b²)/(s²+b²)² |
sinh(bt) | b/(s²-b²) |
cosh(bt) | s/(s²-b²) |
sin(bt)-(bt)cos(bt) | 2b³/(s²+b²)² |
sin(bt)+(bt)cos(bt) | 2bs²/(s²+b²)² |
sin(bt)cosh(bt)-cos(bt)sinh(bt) | 4b³/(s4+4b4) |
sin(bt)sinh(bt) | 2b²s/(s4+4b4) |
sinh(bt)-sin(bt) | 2b³/(s4-b4) |
cosh(bt)-cos(bt) | 2b²s/(s4-b4) |
eat-ebt | (a-b)/[(s-a)(s-b)] |
aeat-bebt | s(a-b)/[(s-a)(s-b)] |
√(1/t) | √[π/s] |
√(t) | √[π/s]/(2s) |
tn-½; n=1,2,3,... | [(1)(3)(5)...(2n-1)√π]/[2nsn+½] |
tr; r > -1 | Γ(r+1)/[sr+1] |