MATH FORMULAS

k is an integer
± means "plus or minus"
means "minus or plus"
means "does not equal"
√( means square root of the argument
abs( means the absolute value of the argument
i means the √(-1), or the imaginary number
π means the number pi
Trigonometric Functions

Definition Ratio
sin(x)= (exi-e-xi)/(2i) tan(x)= sin(x)/cos(x)
cos(x)= (exi+e-xi)/2 cot(x)= cos(x)/sin(x)

Reciprocal
sin(x)= 1/csc(x) csc(x)= 1/sin(x) sin(x)csc(x)=1
cos(x)= 1/sec(x) sec(x)= 1/cos(x) cos(x)sec(x)=1
tan(x)= 1/cot(x) cot(x)= 1/tan(x) tan(x)cot(x)=1

Pythagorean
sin²(x)+cos²(x)=1 csc²(x)-cot²(x)=1 sec²(x)-tan²(x)=1
sin²(x)= 1-cos²(x) csc²(x)= cot²(x)+1 sec²(x)= tan²(x)+1
cos²(x)= 1-sin²(x) cot²(x)= csc²(x)-1 tan²(x)= sec²(x)-1

Cofunction
sin(x)= cos(x-π/2) = cos(π/2-x) cos(x)= sin(π/2±x) = cos(-x) tan(x)= cot(π/2-x) = -cot(x±π/2)
csc(x)= sec(x-π/2) = sec(π/2-x) sec(x)= csc(π/2±x) = sec(-x) cot(x)= tan(π/2-x) = -tan(x±π/2)

Sum/Difference
sin(A±B)= sin(A)cos(B)±cos(A)sin(B)
cos(A±B)= cos(A)cos(B)∓sin(A)sin(B)
tan(A±B)= [tan(A)±tan(B)]/[1∓tan(A)tan(B)]

Product/Sum Sum/Product
sin(A)cos(B)= [sin(A+B)+sin(A-B)]/2 sin(A)±sin(B)= 2sin[(A±B)/2]cos[(A∓B)/2]
cos(A)sin(B)= [sin(A+B)-sin(A-B)]/2
sin(A)sin(B)= [cos(A-B)-cos(A+B)]/2 cos(A)+cos(B)= 2cos[(A+B)/2]cos[(A-B)/2]
cos(A)cos(B)= [cos(A+B)+cos(A-B)]/2 cos(A)-cos(B)= -2sin[(A+B)/2]sin[(A-B)/2]

Double Angle
sin(2x)= 2sin(x)cos(x)
cos(2x)= cos²(x)-sin²(x) = 2cos²(x)-1 = 1-2sin²(x)
tan(2x)= 2tan(x)/[1-tan²(x)] = 2/[cot(x)-tan(x)] = 2cot(x)/[cot²(x)-1] x ≠ (1+2k)π/4

Triple Angle
sin(3x)= 3sin(x)-4sin³(x)
cos(3x)= 4cos³(x)-3cos(x)
tan(3x)= [3tan(x)-tan³(x)]/[1-3tan²(x)] x ≠ (1+2k)π/6

Power Reducing
sin²(x)= [1-cos(2x)]/2
cos²(x)= [1+cos(2x)]/2
tan²(x)= [1-cos(2x)]/[1+cos(2x)] = 1-2tan(x)/tan(2x) x ≠ (1+2k)π/2

Half Angle
sin(x/2)= ±√([1-cos(x)]/2) use (-) when x/2 is in Quadrant 3 or 4
cos(x/2)= ±√([1+cos(x)]/2) use (-) when x/2 is in Quadrant 2 or 3
tan(x/2)= ±√([1-cos(x)]/[1+cos(x)]) use (-) when x/2 is in Quadrant 2 or 4 x ≠ (1+2k)π

The conditions for the Double Angle, Triple Angle, Half Angle, and Power Reducing formulas involving tangent only apply to the original term on the left.
Sine Law Cosine Law
sin(A)/a = sin(B)/b = sin(C)/c a²= b²+c²-(2bc)cos(A)
b²= a²+c²-(2ac)cos(B)
c²= a²+b²-(2ab)cos(C)

Hyperbolic Functions

Definition Ratio
sinh(x)= (ex-e-x)/2 tanh(x)= sinh(x)/cosh(x)
cosh(x)= (ex+e-x)/2 coth(x)= cosh(x)/sinh(x)

Reciprocal
sinh(x)= 1/csch(x) csch(x)= 1/sinh(x) sinh(x)csch(x)=1
cosh(x)= 1/sech(x) sech(x)= 1/cosh(x) cosh(x)sech(x)=1
tanh(x)= 1/coth(x) coth(x)= 1/tanh(x) tanh(x)coth(x)=1

Pythagorean
cosh²(x)-sinh²(x)=1 coth²(x)-csch²(x)=1 sech²(x)+tanh²(x)=1
cosh²(x)= sinh²(x)+1 coth²(x)= csch²(x)+1 sech²(x)= 1-tanh²(x)
sinh²(x)= cosh²(x)-1 csch²(x)= coth²(x)-1 tanh²(x)= 1-sech²(x)

Sum/Difference
sinh(A±B)= sinh(A)cosh(B)±cosh(A)sinh(B)
cosh(A±B)= cosh(A)cosh(B)±sinh(A)sinh(B)
tanh(A±B)= [tanh(A)±tanh(B)]/[1±tanh(A)tanh(B)]

Product/Sum Sum/Product
sinh(A)cosh(B)= [sinh(A+B)+sinh(A-B)]/2 sinh(A)±sinh(B)= 2sinh[(A±B)/2]cosh[(A∓B)/2]
cosh(A)sinh(B)= [sinh(A+B)-sinh(A-B)]/2
sinh(A)sinh(B)= [cosh(A+B)-cosh(A-B)]/2 cosh(A)+cosh(B)= 2cosh[(A+B)/2]cosh[(A-B)/2]
cosh(A)cosh(B)= [cosh(A+B)+cosh(A-B)]/2 cosh(A)-cosh(B)= 2sinh[(A+B)/2]sinh[(A-B)/2]

Double Angle
sinh(2x)= 2sinh(x)cosh(x)
cosh(2x)= cosh²(x)+sinh²(x) = 2sinh²(x)+1 = 2cosh²(x)-1
tanh(2x)= 2tanh(x)/[1+tanh²(x)] = 2/[tanh(x)+coth(x)] = 2coth(x)/[coth²(x)+1]

Triple Angle
sinh(3x)= sinh³(x)+3cosh²(x)sinh(x)
cosh(3x)= cosh³(x)+3sinh²(x)cosh(x)
tanh(3x)= [3tanh(x)+tanh³(x)]/[1+3tanh²(x)]

Power Reducing
sinh²(x)= [cosh(2x)-1]/2
cosh²(x)= [cosh(2x)+1]/2
tanh²(x)= [cosh(2x)-1]/[cosh(2x)+1] = 2tanh(x)/tanh(2x)-1

Inverse Hyperbolic Functions
arcsinh(x)= ln[x+√(x²+1)] x is a real number
arccosh(x)= ln[x±√(x²-1)] x > 1
arctanh(x)= ln[(1+x)/(1-x)]/2 -1 < x < 1
arccsch(x)= ln[(1±√(x²+1))/x] x ≠ 0; use (+) when x > 0; use (-) when x < 0
arcsech(x)= ln[(1±√(1-x²))/x] 0 < x < 1
arccoth(x)= ln[(x+1)/(x-1)]/2 abs(x) > 1

Calculus

u = f(x)
v = g(x)
u′ = du/dx = f′(x)
v′ = dv/dx = g′(x)
ab∫( means the integral of the argument with lower and upper bounds a and b (if any)
loga( means the logarithm of base a
ln( means the natural logarithm of base e
Derivatives

Derivatives
Power Rule Product Rule Quotient Rule Exponential, Logarithmic
un u v u/v eu au ln(u) loga(u)
nun-1u′ uv′+vu′ (u′v-v′u)/v² euu′ auln(a)u′ u′/u u′/[u ln(a)]

Derivatives of Trigonometric Functions
sin(u) cos(u) tan(u) csc(u) sec(u) cot(u)
cos(u)u′ -sin(u)u′ sec²(u)u′ -csc(u)cot(u)u′ sec(u)tan(u)u′ -csc²(u)u′

Derivatives of Inverse Trigonometric Functions
arcsin(u) arccos(u) arctan(u) arccsc(u) arcsec(u) arccot(u)
u′/√(1-u²) -u′/√(1-u²) u′/(1+u²) -u′/[u √(u²-1)] u′/[u √(u²-1)] -u′/(1+u²)

Derivatives of Hyperbolic Functions
sinh(u) cosh(u) tanh(u) csch(u) sech(u) coth(u)
cosh(u)u′ sinh(u)u′ sech²(u)u′ -csch(u)coth(u)u′ -sech(u)tanh(u)u′ -csch²(u)u′

Derivatives of Inverse Hyperbolic Functions
arcsinh(u) arccosh(u) arctanh(u) arccsch(u) arcsech(u) arccoth(u)
u′/√(1+u²) u′/√(u²-1) u′/(1-u²) -u′/[abs(u)√(u²+1)] -u′/[u √(1-u²)] u′/(1-u²)

Integrals

note: an arbitrary constant is to be added to each formula
Basic Forms
undu u dv eudu du/u audu
un+1/(n+1), n ≠ -1 uv - ∫(v du) eu ln(u) au/ln(a), a > 0, a ≠ 1

Basic Trigonometric Forms
tan(u)du cot(u)du sec(u)du csc(u)du
ln[abs(sec(u))] ln[abs(sin(u))] ln[abs(sec(u)+tan(u))] ln[abs(csc(u)-cot(u))]

Basic Hyperbolic Forms
tanh(u)du coth(u)du sech(u)du csch(u)du
ln[cosh(u)] ln[abs(sinh(u))] arctan[abs(sinh(u))] ln[abs(tanh(u/2))]

More Basic Forms
du/(u²+a²) du/(u²-a²), u² ≠ a² du/(a²-u²), u² ≠ a²
arctan(u/a)/a, a ≠ 0 ln[abs((u-a)/(u+a))]/(2a), a ≠ 0 ln[abs((a+u)/(a-u))]/(2a), a ≠ 0

More Basic Forms
du/√(a²-u²), a² > u² du/[u √(u²-a²)], u² > a² > 0
arcsin(u/a) arcsec(a/u)/a
du/[(a+bu)(m+nu)] (u du)/[(a+bu)(m+nu)]
ln[(m+nu)/(a+bu)]/(an-bm), an ≠ bm [ln[a+bu](a/b)-ln[m+nu](m/n)]/(an-bm), an ≠ bm

Exponential Forms
u eaudu uneaudu eausin(bu)du eaucos(bu)du
[(au-1)eau]/a² [uneau]/a - (n/a)∫(un-1eaudu) eau[a sin(bu) - b cos(bu)]/(a²+b²) eau[a cos(bu) - b sin(bu)]/(a²+b²)

Logarithmic Forms
ln(u)du du/[u ln(u)] unln(u)du
u ln(u) - u ln[abs(ln(u))] un+1[(n+1)ln(u)-1]/(n+1)², n ≠ -1

Laplace Transforms

= infinity
* = the symbol for convolucence
Properties
L{f(t)}(s) = 0∫( e-stf(t)dt ) = F(s)
L-1{F(s)}(t) = f(t)
L{eatf(t)}(s) = F(s-a)
L{f′(t)}(s) = sF(s)-f(0)
L{f″(t)}(s) = s²F(s)-sf(0)-f′(0)
L{f(n)(t)}(s) = snF(s)-sn-1f(0)-sn-2f′(0)-...-sf(n-2)(0)-f(n-1)(0)
L{tnf(t)}(s) = (-1)nF(n)(s)
f(t)*g(t) = 0t∫( f(t-v)g(v)dv )
L{f(t)*g(t)}(s) = F(s)G(s)
L-1{F(s)G(s)}(t) = f(t)*g(t)

Brief Table
f(t) F(s)
1 1/s; s > 0
eat 1/(s-a); s > a
tn; n=1,2,3,... n!/(sn+1); s > 0
eattn; n=1,2,3,... n!/[(s-a)n+1]; s > a
sin(bt) b/(s²+b²); s > 0
cos(bt) s/(s²+b²); s > 0
eatsin(bt) b/[(s-a)²+b²]; s > a
eatcos(bt) (s-a)/[(s-a)²+b²]; s > a
t sin(bt) 2bs/(s²+b²)²
t cos(bt) (s²-b²)/(s²+b²)²
sinh(bt) b/(s²-b²)
cosh(bt) s/(s²-b²)
sin(bt)-(bt)cos(bt) 2b³/(s²+b²)²
sin(bt)+(bt)cos(bt) 2bs²/(s²+b²)²
sin(bt)cosh(bt)-cos(bt)sinh(bt) 4b³/(s4+4b4)
sin(bt)sinh(bt) 2b²s/(s4+4b4)
sinh(bt)-sin(bt) 2b³/(s4-b4)
cosh(bt)-cos(bt) 2b²s/(s4-b4)
eat-ebt (a-b)/[(s-a)(s-b)]
aeat-bebt s(a-b)/[(s-a)(s-b)]
√(1/t) √[π/s]
√(t) √[π/s]/(2s)
tn-½; n=1,2,3,... [(1)(3)(5)...(2n-1)√π]/[2nsn+½]
tr; r > -1 Γ(r+1)/[sr+1]

Back to the Home Page