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Problem Given a gaussian distribution for ¢ (z) calculate the values of
(Ax?) and (Ap?) in the momentum representation.
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Solution For evaluating the required quantities in the momentum repre-
sentation we need to find out ¢(p) which is the wavefunction in the momen-
tum space representation and is related to ¢ (x) through a Fourier transform.
Taking the Fourier transform of (1) gives:
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And also
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Using the above two equations we get
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As we get an odd function in p— hk on differentiating ¢(p) and shifting origin
by hk we have
(r) =0 (6)



Now we calculate (x?).
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which gives on integrating using standard formulae
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Now we evaluate (p) -
e ()
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Again shifting origin to Ak we get the p term making the integral odd while
the hk term contributing to the integral thus giving

(p) = hk (13)
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Again shifting the origin by hk we will have both the square terms in shifted
p? contributing and the middle one being an odd function will yield zero thus
giving (first term from p? next from h%k? in (p + hk)?).
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Thus giving
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And this tells us that we have

(aa?) (apt) = an

the uncertainty principle...



Standard Formulae used in the above derivations are:
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And the standard integrals.
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