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Artificial Intelligence
Logic and Theorem Proving

Professor Hager

http://www.cs.jhu.edu/~hager

Reading: Chapters 6, 7, 9 of R&N
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Unit III: Logic

• One of the original problem areas in AI was mathematical
theorem proving: logic theorist, GPS
– first complete inference procedure was computational

• Early on many researchers realized that it was essential to have a
“formal” language for talking about knowledge
– logic seems like the obvious language

• These two facts have led logic and logical inference to be
generally viewed as essential to symbolic AI
– explicit language for expressing “knowledge”

– formal inference procedures

– nothing “hidden” in the code --- a fully declarative approach
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R&N Notes

• R&N tries to avoid some of the formal details by extended
“intuitive explanations
– I prefer to present some ideas a little more formally

• R&N uses the wumpus world to illustrate ideas
– I will not use the wumpus world, but you may want to read though it

• R&N spends a lot of time on propositional logic
– I’ll move to first order as quickly as possible
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Knowledge-Based Agent

1. Knowledge or epistemological level
“What the agent can know about”

2. Logical level
representation of facts as sentences in a formal language

3. Implementation level
how inference is implemented on a physical representation

This is, broadly taken, the science of knowledge representation

This is also often called the “declarative approach.”

Knowledge
Base

Inference Enginepercepts
action
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Logic: The Landscape

• Logics consists of two basic pieces:
– syntax --- what is written down; the language

    3<= 6, a > b, 4 + 6 = 9, p ^ q, K p => K K p, ...

– semantics --- the meaning of the language; what it says about the
world --- the definition of what it means to be true

     p, q, ... take on values 0 and 1,   p ^ q true iff both p ^ q are 1

• Two notions of determining what follows from what we know
– KB |= a  ◊ KB entails a; if KB is true, then so is a
– KB |-i a   ◊ inference procedure i derives a from the sentences in KB
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Logic: The Landscape

• We can make up any way of creating new sentences
from old
– i is sound if KB |-i a  implies that KB |= a

• we only derive statements that are true given what we know

• the record of the derivation is called a proof

– i is complete if KB |= a implies that KB |-i a
• if a fact is true, we can derive it

• Soundness is essential (and usually easy)

• Completeness is hard (and sometimes impossible!)
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Logic: The Landscape
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Semantics

• Semantics is the link between what we write (syntax) and what it
means (semantics)

– Suppose that S is the set of all sentences in the language (we have
to define this)

– Suppose that I is a function that maps every sentence of S to some
interpretation of that sentence: M is a model that determines the
basic truth values of the primitives:

e.g   I[M]: S ◊ {True,False}

– We will assume all of our languages of compositional: we can
recursively define the meaning of sentences in terms of their
components
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Semantics

• A sentence s is true under an interpretation  (alternatively, true in
a model M)  if  I[M](s) = True
– I will sometimes write M |= s

– Think about KB |= s as shorthand for
forall M such that M |= KB, M |= a

• A sentence s is valid if it is true in all interpretations (true in all
models)
– I will sometimes write |= s

– This is really just like the above; we just don’t constrain the models
we consider

• A sentence s is satisfiable if it is true in some interpretation (or
model)

• A sentence s is unsatisfiable if it true in no interpretation
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Propositional Logic: An Example

• Atoms: True, False, p, q, dave_is_here, students_sleep_in_AI
• Language:  Sent = Atom |
                                 ~ Sent | Sent ^ Sent | Sent v Sent | ....

• Model: set of pairs: { (p,1), (q,0), (students_sleeping 1), ..}

• Atoms:
– I[M](True) = True
– I[M](False) = False
– I[M](a) = True if (a,1) in M; False otherwise

• Connectives:
– I[M](~s) = True if I[M](s) is False; False otherwise
– I[M](s1 v s2) = True if either I[M](s1) is true or I[M](s2) is true; False

otherwise
– I[M](s1 ^ s2) = True if both I[M](s1) is true and I[M](s2) is true; False

otherwise
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Propositional Logic: An Example

• Atoms: True, False, p, q, dave_is_here, students_wake_up, ...
• Language:  Sent = Atom |
                                 ~ Sent | Sent ^ Sent | Sent v Sent

• Model: a universe U; each element p associated with Sp, a subset
of U

• Atoms:
– I[M](a) = Sa

– I[M](True) = U
– I[M](False) =  ∅

• Connectives:
– I[M](~s) = U - I[M](s)
– I[M](s1 v s2) = I[M](s1) ∪ I[M](s2)
– I[M](s1 ^ s2) = I[M](s1) ∩ I[M](s2)
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Propositional Logic: Inference

• We could do inference for propositional logic just by checking
models
– 2n potential true values for a sentence with n atoms

• Normally, we (well, computer scientists) manipulate syntax
– many logics (e.g. first order) don’t have enumerable models!

• Proof theory is the way that define how we manipulate symbols

– e.g. modus ponens  (defining a => b as ~ a v b)
• given a and a => b, we conclude b

– modus ponens is sound
• hint: assume this is not the case and work it through ...

– Is modus ponens complete
• yes --- if we provide enough axioms!
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Forward-Chaining

• A commonly used paradigm in logic is forward-chaining: that is, repeated
use of modus ponens:

1. {a^b,r=>q^t,q=>s,s^q=>done,r^m} -->{a,b,r=>q,q=>s,s^q=>done,r,m}

    2. {a,b,r=>q,q=>s,s^q=>done,r,m,q}

3. {a,b,r=>q,q=>s,s^q=>done,r,m,q,s}

4.{a,b,r=>q,q=>s,s^q=>done,r,m,q,s,done}

Note that we can put sentences into a “normal form” using only ^, => and ~.  As a
result, we can make forward chaining complete
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Similarly, We Can Backward Chain

• Given {a,b,r=>q,q=>s,s^q=>done,r,m}, prove “done”:

1. done<=s^q  ====> prove s, prove q

2. s<=q ===> prove q

3. q<=r ===> prove r <----- “a given”

In general, this creates a tree of desired subproofs which must
eventually terminate with a fringe of “givens”

Hard to make this complete in general, although we will see a case
where this is a complete inference procedure



8

2/18/04 CS 435, Copyright G.D. Hager

Propositional Logic: Inference

• Natural deduction systems require only one axiom, but more rules
– Generally written in the form of trees

– Example: show that r ^ (p => q) ^ p |- q v t

• Rules:
– modus ponens

– and-elim

– or-intro

– and-intro

– double negation elimination

– unit resolution

– general resolution
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The Resolution Rule

• Think of a=>b and a as givens

• Suppose we want to prove b
• Proceed by contradiction: assert ~b  and show it leads to a

contradiction

• Use a special normal form: CNF --> a conjunct of disjuncts
– ~a v b, a, ~b

• Note that if we have x v y, ~x in the set, then it must be the case
that y is true

• Thus, ~a v b,a --> b; but b, ~b ---> empty clause
<<<contradiction!!
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Resolution is Enough

• The idea of resolution is to use a canonical form:
–  r ^ (p => q) ^ p |- q v t is the same as |- ( r ^ (p => q) ^ p ) => q v t

– Put into CNF (a conjunct of disjuncts)

– Apply the resolution rule (a lot)

• Other facts about proposition (and the other logics we care about)

– monotonicity: adding facts doesn’t make things that were true untrue

– locality: we don’t need to inspect the entire KB to infer something

• Imagine trying to formalize family relationships using PL
– john_sonof_dave, mary_motherof_john

– can we describe an infer the notion of grandmother (or, more
generally, ancester)?
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First Order Logic

• Propositional logic is often referred to as “0th-order” logic
– you can only talk about facts, not objects in the world

– first order talks about  objects

– second order talks about sets of objects (predicates)

– third order talks about sets of sets of objects (predicates on
predicates)

– ....

• Invented by Frege, Peano, 1880’s

• Even with first order logics, there are lots of questions as to what
to include in the language
– equality

– arithmetic

– sets
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FOL: Syntax

• Term:  constant | variable | fn (term1, term2, .. termn)
– ground terms contain no variables

• AtomicSentence: pred (term1, term2, .. termn)

• Sentence: AtomicSentence |  ~ Sentence |

                                 Sentence  connective Sentence

                      quantifier Sentence

                      (Sentence)

• quantifier: ∀ | ∃  (by convention, scope as far as possible)

• connective: ^ | v | ◊ | ⇓◊ | ~

• W.L.G, we will assume that all variables are quantified: a well-
formed formula (wff  -- pronounced “woof”)
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An Example

• ∀ x  male(x) v female(x) ^ ∀ x  ~(male(x) ^ female(x))

• ∀ x y z parentof(x,y) ^ ancesterof(y,z) ◊ ancesterof(x,z)

• ∀ x y parentof(x,y) ◊ ancesterof(x,y)
• ∀ x parentof(fatherof(x),x) ^ parentof(motherof(x),x) ^ male(fatherof(x))

^ female(motherof(x))
• ∀ x  ∃ y1, y2 parentof(y1,x) ^ parentof(y2,x) ^ ~(y1 = y2)

• ∀x,y childof(y,x) ⇓◊ parentof(x,y)

• male(john), female(annika), parentof(annika,john) .....

• E.g. show ∀ x  ∃ y ancesterof(y,x)
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A Few Facts

• ∀ x ~ P(x) ==  ~ ∃ x P(x)
• ∃ x ~ P(x) ==  ~ ∀ x P(x)

• Equality is semantic --- objects denote the same thing
– equivalent to a two place predicate of identical pairs

• Other extensions
– lambda operators
– unique existence ∃!
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How Can We Interpret FOL?

• Model:
– Universe U of objects

– A mapping c that relates constants to elements of U
• e.g. c(John) = ....

– For each function symbol f of n arguments, a function fU: Un ◊ U
• denote I[M](f)

– For each predicate P of n arguments, a subset PU of Un

– denote I[M](P)

• For interpretation, assume wff’s that are uniquely named

• Consider a substitution s to be a list of pairs x/u where x is a
variable in the language and u is an element of U

• a [s] is the sentence a with all of the variable assignments given
in s
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A Sketch of Interpretation

• Terms:
– I[M,s](constant) = c(constant)
– I[M,s](variable) = u where x/u is in s
– I[M,s](f(t1,t2, ... tn)) = I[M](f)(I[M,s](t1), I[M,s](t2) ... I[M,s](tn))

• Atomic Sentences
– I[M,s](P(t1, t2, ... tn) = true if <I[M,s](t1),... I[M,s](tn)>∈ I[M](P)
                                        false otherwise

• Sentences
– I[M,s]( P1 v P2) = true if one of I[M,s](P1) or I[M,s](P2) is true
– I[M,s](∀ x P) = true if for every u ∈ U, I[M,s ∪ {x/u}](P) is true
– I[M,s](∃ x P) = true there is some u ∈ U such that I[M,s ∪ {x/u}](P) is

true
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Proofs in FOL

• Note that now, except in special cases, our models are infinite in number ---
enumeration no longer works

• We can use the same general system as with propositional logic, except we need
some extra rules (page 266 R&N or http://plato.stanford.edu/entries/logic-
classical/)

– Universal Elimination
– Existential Elimination (there is a bug here)
– Existential Introduction

• occurs check!

– Universal Introduction  (if a |- v and x does not occur free in V and
a |- ∀ x V would be the normal rule)

• Consider two statements
– ∀ x ∃ y p(x,y) => ∃ y ∀ x p(x,y)
– ∃ y ∀ x p(x,y) => ∀ x ∃ y p(x,y)
– which is true?
– how could we prove it?
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Example

• From our previous axiomitization
1. ∀ x  male(x) v female(x) ^  ~(male(x) ^ female(x))
2. ∀ x y z parentof(x,y) ^ ancesterof(y,z) ◊ ancesterof(x,z)
3. ∀ x y parentof(x,y) ◊ ancesterof(x,y)
4. ∀ x parentof(fatherof(x),x) ^ parentof(motherof(x),x) ^ male(fatherof(x)) ^

female(motherof(x))
5. ∀ x  ∃ y1, y2 parentof(y1,x) ^ parentof(y2,x) ^ ~(y1 = y2)
6. ∀x,y childof(y,x) ⇓◊ parentof(x,y)
7. male(john), female(annika), parentof(annika,john) .....

• show
– ∀ x  ∃ y ancesterof(y,x) ^ female(y)
– childof(john, annika)
– ~childof(annika,john)
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Resolution in FOL

• Recall we talked briefly about the resolution principle in
propositional logic:
– convert to clausal form
– use the resolution rule
– try to derive an empty clause

• For first order logic, it’s about the same thing, but we now have to
deal with quantifiers:
– ∃ y ∀ x p(x,y)  => ∀ x p(x,A)  where A is a new symbol

– ∀ x ∃ y p(x,y) => ???
• intuitively, ∀ x p(x,A) is wrong
• we want to capture the idea that the existential quantifier is somehow

dependent on the universal scoped outside of it



14

2/18/04 CS 435, Copyright G.D. Hager

Skolemization

• Skolemization (named after the Polish logician Skolem)
– replace each existentially quantified variable with a new function with

arguments that are any universally quantified variable scoped
outside of it

– ∃ y ∀ x p(x,y)  => ∀ x p(x,sk1)

– ∀ x ∃ y p(x,y) => ∀ x p(x,sk2(x))

– ∀ x ∃ y ∃ z p(x,y) ^ q(x,z) ◊ ∀ x p(x,sk3(x)) ^ q(x,sk4(x))

– ∀ x ∀ y ∃ z p(x,y) ^ q(x,z) ◊ ∀ x y p(x,y) ^ q(x,sk5(x,y))

• Note this is a way to deal with the limitations of the natural
deduction system in the book
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Conversion to Normal Form

• Negate the formulate to be proven
– ~ (∃ y ∀ x p(x,y) => ∀ x ∃ y p(x,y))

• Replace A => B by ~ A v B
– ~(~ ∃ y ∀ x p(x,y) v ∀ x ∃ y p(x,y))

• Move negation inward
– ∃ y ∀ x  p(x,y) ^ ∃ x ∀ y ~ p(x,y)

• Standardize apart
– ∃ y ∀ x  p(x,y) ^ ∃ w ∀ z ~ p(w,z)

• Move quantifiers left
– ∃ y ∀ x ∃ w ∀ z p(x,y) ^ ~ p(w,z)

• Skolemize
– p(x,sk1) ^ ~ p(sk2(x),z)
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Conversion to Normal Form

• Distribute ^ over v
– we don’t have any, but in general (a  ^ b) v c ◊ (a v c) ^ (b v c)

• Drop the ^ and v and write sets of clauses

– {p(x,sk1)}  { ~ p(sk2(x),z)}

• As a result, we have sets of clauses that we can now
apply the resolution rule to
– find a set with a positive term that matches a negative term in

another set

– but to do so, we need to understand how to match things
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Unification

• The process of matching is called unification:
– p(x) matches p(Jack) with x = Jack

– q(fatherof(x),y) matches q(y,z) with y=fatherof(x) and z = y
• note the result of the match is q(fatherof(x),fatherof(x))

– p(x) matches p(y) with
• x = Jack and y = Jack

• x = John and y = John

• or x = y

– The match that makes the least commitment is called the
most general unifier (MGU)

– We can phrase unification in terms of the parse tree of the
expression

– We use the notation subst(t,s) to denote the application of the
substitution s = {v1/t1,v2/t2 ... vn/tn) to t.
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Unification Algorithm

• Given two formulas A and B, first standardize them apart
– parentof(fatherof(John),y)     parentof(y,z)  ◊
– parentof(fatherof(John),v1)   parentof(v2,v3)

• Unify(t1,t2): Determine if the head matches and the same arity
– for each pair of terms , call Unify-term(t1,t2) which returns a

substitution S
– Apply S to the remaining terms and repeat the process for the

remaining terms
– Return the total substitution (theunion) so computed

• Unify-term(t1,t2)
– a constant matches the same constant
– a variable v matches a term t (with substitution v = t) provided v does

not occur in t; return the substitution (note how this works with
skolemization

– Otherwise, we must have two terms, t1 and t2.
• Call Unify on t1 and t2 and return the resulting substitution
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Resolution Examples

• ∀ x ∃ y p(x,y) ◊ ∃ y ∀ x p(x,y)
• ∃ y ∀ x p(x,y) ◊ ∀ x ∃ y p(x,y)
• From our previous axiomitization

– ∀ x  male(x) v female(x) ^  ~(male(x) ^ female(x))
– ∀ x y z parentof(x,y) ^ ancesterof(y,z) ◊ ancesterof(x,z)
– ∀ x y parentof(x,y) ◊ ancesterof(x,y)
– ∀ x parentof(fatherof(x),x) ^ parentof(motherof(x),x) ^ male(fatherof(x)) ^

female(motherof(x))
– ∀ x  ∃ y1, y2 parentof(y1,x) ^ parentof(y2,x) ^ ~(y1 = y2)
– ∀x,y childof(y,x) ⇓◊ parentof(x,y)
– male(john), female(annika), parentof(annika,john) .....

• show
– ∀ x  ∃ y ancesterof(y,x) ^ female(y)

– childof(john, annika)
– ~childof(annika,john)
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Example

• Relevant clausal forms from KB
– {~parentof(x,y), ancesterof(x,y)}

– {parentof(motherof(x),x)}

– {female(motherof(x))}

• negated goal
– ~∀ x  ∃ y ancesterof(y,x) ^ female(y)

– {~ancesterof(y,A),~female(y)}

• Proof .... (done in class)
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Resolution Strategies

• Unit Preference
– always try to resolve with single literals

• Set of support
– Start with negated query and only resolve against descendents of

that query

• Input Resolution
– Every resolution combines an input sentence (KB or query) with

some other sentence

– linear resolution is a slight generalization

• Subsumption
– only keep the  most general set of sentences around


