Artificial Intelligence
Logic and Theorem Proving

Professor Hager
http://www.cs.jhu.edu/~hager

Reading: Chapters 6, 7, 9 of R&N

2/18/04 CS 435, Copyright G.D. Hager

Unit IlI: Logic

* One of the original problem areas in Al was mathematical
theorem proving: logic theorist, GPS
— first complete inference procedure was computational

« Early on many researchers realized that it was essential to have a
“formal” language for talking about knowledge
— logic seems like the obvious language

» These two facts have led logic and logical inference to be
generally viewed as essential to symbolic Al
— explicit language for expressing “knowledge”
— formal inference procedures
— nothing “hidden” in the code --- a fully declarative approach

2/18/04 CS 435, Copyright G.D. Hager

R&N Notes

* RA&N tries to avoid some of the formal details by extended
“intuitive explanations
— | prefer to present some ideas a little more formally

* R&N uses the wumpus world to illustrate ideas
— 1 will not use the wumpus world, but you may want to read though it

* R&N spends a lot of time on propositional logic
— I'llmove to first order as quickly as possible

2/18/04 CS 435, Copyright G.D. Hager

Knowledge-Based Agent

; action

percepts Inference Engine >
Knowledge

Base

1. Knowledge or epistemological level
“What the agent can know about”

2. Logical level
representation of facts as sentences in a formal language

3. Implementation level
how inference is implemented on a physical representation

This is, broadly taken, the science of knowledge representation
This is also often called the “declarative approach.”

2/18/04 CS 435, Copyright G.D. Hager

Logic: The Landscape

Logics consists of two basic pieces:
— syntax --- what is written down; the language

3<=6,a>b,4+6=9,p*qg, Kp=>KKp, ...

— semantics --- the meaning of the language; what it says about the
world --- the definition of what it means to be true

p, q, ... take on values 0 and 1, p * q true iff both p * q are 1

Two notions of determining what follows from what we know
— KB |=a () KB entails a; if KB is true, then so is a

— KB |-;a { inference procedure i derives a from the sentences in KB

2/18/04 CS 435, Copyright G.D. Hager

2/18/04

Logic: The Landscape

+ We can make up any way of creating new sentences
from old

— iis soundif KB |-;a implies that KB |= a
* we only derive statements that are true given what we know
« the record of the derivation is called a proof

— iis complete if KB |= a implies that KB |-;a
« if a fact is true, we can derive it

+ Soundness is essential (and usually easy)
+ Completeness is hard (and sometimes impossible!)

CS 435, Copyright G.D. Hager

Logic: The Landscape

The language

AN
4 entailment I

sentences » sentences
w
(D U)
3 | | g
2 3
& =3

facts

v

facts
follows

e

The “real world”

2/18/04 CS 435, Copyright G.D. Hager

Semantics

+ Semantics is the link between what we write (syntax) and what it
means (semantics)

— Suppose that S is the set of all sentences in the language (we have
to define this)

— Suppose that | is a function that maps every sentence of S to some
interpretation of that sentence: M is a model that determines the
basic truth values of the primitives:

e.g I[M]: S ¢ {True,False}

— We will assume all of our languages of compositional: we can

recursively define the meaning of sentences in terms of their
components

2/18/04 CS 435, Copyright G.D. Hager

Semantics

A sentence s is true under an interpretation (alternatively, true in
a model M) if I[M](s) = True
— | will sometimes write M |= s
— Think about KB |= s as shorthand for
forall M such that M |= KB, M |= a

A sentence s is valid if it is true in all interpretations (true in all
models)

— | will sometimes write |= s

— This is really just like the above; we just don’t constrain the models

we consider

A sentence s is satisfiable if it is true in some interpretation (or
model)
A sentence s is unsatisfiable if it true in no interpretation

2/18/04 CS 435, Copyright G.D. Hager

Propositional Logic: An Example

Atoms: True, False, p, q, dave_is_here, students_sleep_in_Al
Language: Sent = Atom |
~ Sent | Sent * Sent | Sentv Sent |

Model: set of pairs: { (p,1), (q,0), (students_sleeping 1), ..}

Atoms:
— I[M](True) = True
— I[M](False) = False
— I[M](a) = True if (a,1) in M; False otherwise
Connectives:
— I[M](~s) = True if IIM](s) is False; False otherwise
— I[M](s1 v s2) = True if either I[[M](s1) is true or [[M](s2) is true; False
otherwise
— I[M](s1 * s2) = True if both [[M](s1) is true and I[M](s2) is true; False
otherwise

2/18/04 CS 435, Copyright G.D. Hager

Propositional Logic: An Example

» Atoms: True, False, p, q, dave_is_here, students_wake up, ...
+ Language: Sent = Atom |
~ Sent | Sent * Sent | Sent v Sent

 Model: a universe U; each element p associated with S, a subset
of U

¢ Atoms:
- I[MJ(a) =S,
— [[M](True)=U
— I[M](False) = &
« Connectives:
= I[M](~s) = U - I[M](s)
— I[M](s1 v s2) = I[M](s1) U I[M](s2)
— I[M](s1 * s2) = I[M](s1) N I[M](s2)

2/18/04 CS 435, Copyright G.D. Hager

Propositional Logic: Inference

* We could do inference for propositional logic just by checking
models
— 2n potential true values for a sentence with n atoms
* Normally, we (well, computer scientists) manipulate syntax
— many logics (e.g. first order) don’t have enumerable models!
» Proof theory is the way that define how we manipulate symbols

— e.g. modus ponens (defininga=>bas~avb)
+ given a and a => b, we conclude b

— modus ponens is sound
* hint: assume this is not the case and work it through ...

— Is modus ponens complete
+ yes --- if we provide enough axioms!

2/18/04 CS 435, Copyright G.D. Hager

Forward-Chaining

* A commonly used paradigm in logic is forward-chaining: that is, repeated
use of modus ponens:

1. {a"b,r=>g",q=>s,s*q=>done,r*m} -->{a,b,r=>q,q=>s,s*q=>done,r,m}
2. {a,b,r=>q,9=>s,s"q=>done,r,m,q}
3. {a,b,r=>q,q=>s,s"q=>done,r,m,q,s}

4 {a,b,r=>q,q=>s,s"q=>done,r,m,q,s,done}

Note that we can put sentences into a “normal form” using only , =>and ~. As a
result, we can make forward chaining complete

2/18/04 CS 435, Copyright G.D. Hager

Similarly, We Can Backward Chain

* Given {a,b,r=>q,q=>s,s*q=>done,r,m}, prove “done”:

1. done<=s*q ====> prove s, prove q
2. s<=q ===>prove q
3. g<=r===>prove r <----- “a given”

In general, this creates a tree of desired subproofs which must
eventually terminate with a fringe of “givens”

Hard to make this complete in general, although we will see a case
where this is a complete inference procedure

2/18/04 CS 435, Copyright G.D. Hager

Propositional Logic: Inference

» Natural deduction systems require only one axiom, but more rules
— Generally written in the form of trees
— Example: show thatr* (p=>q)*p|-qvt

* Rules:
— modus ponens
— and-elim
— or-intro
— and-intro
— double negation elimination
— unit resolution
— general resolution

2/18/04 CS 435, Copyright G.D. Hager

The Resolution Rule

» Think of a=>b and a as givens
» Suppose we want to prove b

* Proceed by contradiction: assert ~b and show it leads to a
contradiction

* Use a special normal form: CNF --> a conjunct of disjuncts
— ~avb,a,~b

* Note that if we have x vy, ~x in the set, then it must be the case
that y is true

* Thus, ~av b,a-->b; but b, ~b ---> empty clause
<<<contradiction!!

2/18/04 CS 435, Copyright G.D. Hager

Resolution is Enough

* The idea of resolution is to use a canonical form:
- rMp=>q)*pl-qvtisthesameas|-(r*(p=>q)*p)=>qvt
— Putinto CNF (a conjunct of disjuncts)
— Apply the resolution rule (a lot)

» Other facts about proposition (and the other logics we care about)

— monotonicity: adding facts doesn’t make things that were true untrue
— locality: we don’t need to inspect the entire KB to infer something

+ Imagine trying to formalize family relationships using PL
— john_sonof_dave, mary_motherof_john

— can we describe an infer the notion of grandmother (or, more
generally, ancester)?

2/18/04 CS 435, Copyright G.D. Hager

First Order Logic

» Propositional logic is often referred to as “0"-order” logic
— you can only talk about facts, not objects in the world

first order talks about objects

second order talks about sets of objects (predicates)

third order talks about sets of sets of objects (predicates on
predicates)

* Invented by Frege, Peano, 1880’s
+ Even with first order logics, there are lots of questions as to what
to include in the language
— equality
— arithmetic
— sets

2/18/04 CS 435, Copyright G.D. Hager

FOL: Syntax

+ Term: constant | variable | fn (term,, term,, .. term,)
— ground terms contain no variables
+ AtomicSentence: pred (term,, term,, .. term,)

+ Sentence: AtomicSentence | ~ Sentence |
Sentence connective Sentence
quantifier Sentence
(Sentence)

» quantifier: V | 3 (by convention, scope as far as possible)
« connective: M [v || 0|~

* W.L.G, we will assume that all variables are quantified: a well-
formed formula (wff -- pronounced “woof”)

2/18/04 CS 435, Copyright G.D. Hager

An Example

V x male(x) v female(x) * ¥ x ~(male(x) * female(x))

V x y z parentof(x,y) * ancesterof(y,z) { ancesterof(x,z)

V x y parentof(x,y) ¢ ancesterof(x,y)

V x parentof(fatherof(x),x) * parentof(motherof(x),x) * male(fatherof(x))
A female(motherof(x))

V x 3 y1, y2 parentof(y1,x) » parentof(y2,x) * ~(y1 =y2)

Vx,y childof(y,x) |{ parentof(x,y)

male(john), female(annika), parentof(annika,john)

E.g. show V x 3y ancesterof(y,x)

2/18/04 CS 435, Copyright G.D. Hager

10

A Few Facts

e Vx~P(x)== ~3xP(x)
« Ix~P(x)== ~V xP(x)

» Equality is semantic --- objects denote the same thing
— equivalent to a two place predicate of identical pairs

+ Other extensions
— lambda operators
— unique existence 3!

2/18/04 CS 435, Copyright G.D. Hager

How Can We Interpret FOL?

* Model:
— Universe U of objects
A mapping c that relates constants to elements of U
* e.g.c(John) = ...
For each function symbol f of n arguments, a function : U) U
+ denote I[M](f)
For each predicate P of n arguments, a subset PV of Ur
denote [[M](P)

* For interpretation, assume wff's that are uniquely named

» Consider a substitution s to be a list of pairs x/u where x is a
variable in the language and u is an element of U

+ a/[s]is the sentence a with all of the variable assignments given
ins

2/18/04 CS 435, Copyright G.D. Hager

11

A Sketch of Interpretation

+ Terms:
— I[M,s](constant) = ¢(constant)
— I[M,s](variable) = u where x/uis in s
— I[M,s](f(t1,12, ... tn)) = I[M](F)(I[M,s](t1), I[M,s](t2) ... I[M,s](tn))

« Atomic Sentences
— I[M,s](P(t1, t2, ... tn) = true if <I[M,s](t1),... [[M,s](tn)>€ I[M](P)
false otherwise

+ Sentences
— I[M,s](P1 v P2) = true if one of I[M,s](P1) or I[M,s](P2) is true
— I[M,s](V x P) = true if for every u € U, I[M,s U {x/u}](P) is true
— 1[M,s](3 x P) = true there is some u € U such that I[[M,s U {x/u}](P) is
true

2/18/04 CS 435, Copyright G.D. Hager

Proofs in FOL

* Note that now, except in special cases, our models are infinite in number ---
enumeration no longer works

* We can use the same general system as with propositional logic, except we need
some extra rules (page 266 R&N or http://plato.stanford.edu/entries/logic-
classical/)

— Universal Elimination
— Existential Elimination (there is a bug here)
— Existential Introduction
« occurs check!
— Universal Introduction (if a |- v and x does not occur free in V and
a |- vV x V would be the normal rule)

+ Consider two statements
- Vx3yp(xy)=>3y VY xpxy)
- 3y Vxp(xy)=>Vx3ypxy)
— which is true?
— how could we prove it?

2/18/04 CS 435, Copyright G.D. Hager

12

Example

* From our previous axiomitization

1. V x male(x) v female(x) » ~(male(x) » female(x))

2. V xy z parentof(x,y) * ancesterof(y,z) () ancesterof(x,z)
3. V xy parentof(x,y) ¢ ancesterof(x,y)
4

V x parentof(fatherof(x),x) » parentof(motherof(x),x) * male(fatherof(x)) *
female(motherof(x))

5. V x 3y1, y2 parentof(y1,x) » parentof(y2,x) » ~(y1 = y2)
Vx,y childof(y,x) ¢ parentof(x,y)
7. male(john), female(annika), parentof(annika,john)

o

* show
— ¥V x 3y ancesterof(y,x) * female(y)
— childof(john, annika)
— ~childof(annika,john)

2/18/04 CS 435, Copyright G.D. Hager

Resolution in FOL

» Recall we talked briefly about the resolution principle in
propositional logic:
— convert to clausal form
— use the resolution rule
— try to derive an empty clause

+ For first order logic, it's about the same thing, but we now have to
deal with quantifiers:
— Iy Vxp(xy) =>V xp(x,A) where A is a new symbol

- Vx3ypxy)=>???
* intuitively, ¥V x p(x,A) is wrong

+ we want to capture the idea that the existential quantifier is somehow
dependent on the universal scoped outside of it

2/18/04 CS 435, Copyright G.D. Hager

13

Skolemization

+ Skolemization (named after the Polish logician Skolem)

— replace each existentially quantified variable with a new function with
arguments that are any universally quantified variable scoped
outside of it

— Iy Vxp(xy) =>V xp(x,sk1)

— Vx3yp(xy) =V x p(x,sk2(x))

— Vx3y3Izpxy)*qxz))V xpxsk3(x)) * q(x,skd(x))
- VxVy3zp(xy)*akxz)QVxypxy) " axsks(xy))

* Note this is a way to deal with the limitations of the natural
deduction system in the book

2/18/04 CS 435, Copyright G.D. Hager

Conversion to Normal Form

* Negate the formulate to be proven

- ~@yVxpxy)=>Vx3ypxy))
* Replace A=>Bby~AvB

- ~(~3yVxpxy)vVx3Iyp(xy))
* Move negation inward

— Ay Vx pxy)*IxVy~pxy)
+ Standardize apart

— 3y VX pxy)*IwVY z~p(w,z)
* Move quantifiers left

— JyVx3IwVzplxy)*~pw,z)
» Skolemize

— p(x,sk1) A ~ p(sk2(x),z)

2/18/04 CS 435, Copyright G.D. Hager

14

Conversion to Normal Form

+ Distribute * over v
— we don’t have any, but in general (a *b)vc{(avc)”(bvc)
» Drop the * and v and write sets of clauses

— {p(x,;sk1)} { ~ p(sk2(x).2)}

» As aresult, we have sets of clauses that we can now
apply the resolution rule to

— find a set with a positive term that matches a negative term in
another set

— but to do so, we need to understand how to match things

2/18/04 CS 435, Copyright G.D. Hager

Unification

» The process of matching is called unification:
— p(x) matches p(Jack) with x = Jack
q(fatherof(x),y) matches q(y,z) with y=fatherof(x) and z =y
* note the result of the match is g(fatherof(x),fatherof(x))
— p(x) matches p(y) with
» x=Jack and y = Jack
» x =John and y = John
s OrX=y
— The match that makes the least commitment is called the
most general unifier (MGU)
— We can phrase unification in terms of the parse tree of the
expression

— We use the notation subst(t,s) to denote the application of the
substitution s = {v1/t1,v2/t2 ... vn/tn) to t.

2/18/04 CS 435, Copyright G.D. Hager

15

Unification Algorithm

» Given two formulas A and B, first standardize them apart
— parentof(fatherof(John),y) parentof(y,z) ¢
— parentof(fatherof(John),v1) parentof(v2,v3)

» Unify(t1,t2): Determine if the head matches and the same arity

— for each pair of terms , call Unify-term(t1,t2) which returns a
substitution S

— Apply S to the remaining terms and repeat the process for the
remaining terms

— Return the total substitution (theunion) so computed
* Unify-term(t1,t2)
— a constant matches the same constant

— avariable v matches a term t (with substitution v = t) provided v does
not occur in t; return the substitution (note how this works with
skolemization

— Otherwise, we must have two terms, t1 and t2.
» Call Unify on t1 and t2 and return the resulting substitution

2/18/04 CS 435, Copyright G.D. Hager

Resolution Examples

© Vx3ypxy) 03y Vxpxy)

+ Ay Vxpxy)QVx3ypxy)

* From our previous axiomitization
— ¥V x male(x) v female(x) » ~(male(x) * female(x))
— V xy z parentof(x,y) * ancesterof(y,z) {) ancesterof(x,z)
— V xy parentof(x,y) () ancesterof(x,y)

— VY x parentof(fatherof(x),x) » parentof(motherof(x),x) » male(fatherof(x)) *
female(motherof(x))

— VYV x 3y1,y2 parentof(y1,x) » parentof(y2,x) * ~(y1 = y2)
— Vx,y childof(y,x) |{ parentof(x,y)
— male(john), female(annika), parentof(annika,john)

* show
— VY x 3y ancesterof(y,x) * female(y)
— childof(john, annika)
— ~childof(annika,john)

2/18/04 CS 435, Copyright G.D. Hager

16

Example

* Relevant clausal forms from KB
— {~parentof(x,y), ancesterof(x,y)}
— {parentof(motherof(x),x)}
— {female(motherof(x))}

* negated goal
— ~V x 3y ancesterof(y,x) * female(y)

— {~ancesterof(y,A),~female(y)}

* Proof (done in class)

2/18/04 CS 435, Copyright G.D. Hager

Resolution Strategies

* Unit Preference
— always try to resolve with single literals

» Set of support

— Start with negated query and only resolve against descendents of
that query

* Input Resolution

— Every resolution combines an input sentence (KB or query) with
some other sentence

— linear resolution is a slight generalization

* Subsumption
— only keep the most general set of sentences around

2/18/04 CS 435, Copyright G.D. Hager

17

