Visit : www.swarooppavi.tk

Introduction

RSA is a public key cryptosystem for both encryption and authentication; it was given by three
scientists viz. Ron Rivest, Adi Shamir and Leonard Adleman. This algorithm is much secure than any
other algorithm. The latest key size used for this encryption technique is 512 bits to 2048 bits.

With the advent of computers it has become possible to perform computations at teraflop speeds so
such algorithms could easily be cracked. But RSA encryption uses the concept of two large prime
numbers, such that, their product could not be easily factorized. Let us see how this algorithm works

and understand its implementation using Java Script.

Mathematical Background

Modular Arithmetic

RSA uses modular arithmetic. This is similar to conventional arithmetic, but only uses positive
integers that are less than a chosen value, called the modulus. Addition, subtraction and
multiplication work like regular maths, but there is no division. You can use any value for the
modulus; the diagram uses 13, so counting goes 0, 1, 2, ..., 11, 12, 0, 1, 2 ... The notation used for

expressions involving modular arithmetic is:

X =y (mod m)

Which reads as "x is equivalent to y, modulo m". What this means is that x and y leave the same remainder
when divided by m. For example, 7 = 23 (mod 8) and 22 = 13 (mod 9). The following statement is a basic
principle of modular arithmetic:

a+ kp =a (mod p)

You can visualize this on the diagram - each time you add p you go round the circle, back to where you started.
It doesn't matter where you start, how big the circle is, or how many times you do it, it's always true.

Primality and Coprimality

« A number is prime if the only numbers that exactly divide it are 1 and itself. e.g. 17 is prime, but 15
isn't, because it's divisible by 3 and 5.

« A pair of numbers are coprime if the largest number that exactly divides both of them is 1. The numbers
themselves don't have to be prime. e.g. 8 and 9 are coprime, but 8 and 10 are not, because they're both
divisible by 2.

« If you have a pair of distinct prime numbers, they will always be coprime to each other.

Chinese Remainder Theorem

This theorem provides a way to combine two modular equations that use different moduli.

Theorem <> < (mod
%TD_OPTY%>X="y">

Visit : www.swarooppavi.tk
<> <> <qgandp %TD_OPT%>with>

—, X =Yy (mod pq)

<>

Proof

=
=

=

<> < (mod %TD_OPT%>x="y">
X=y+kp

X-y=Kkp

p divides (X - y)

<> by a similar route, q divides (x - y)
<> as p and q are coprime, pq divides (X - y)

=

=

-y =1(pa)
x =y (mod pq)

Fermat/Euler Theorem

This theorem is a surprising identity that relates the exponent to the modulus.

Theorem
<>

<>

Proof

<>

<>

<>
<>

<>

<>
<>
<>

<>

<>

P1 =1 (mod p)
if p is prime and x #0 (mod p)

<...2,1, numbers of Q, set the %TD_OPT%>consider>

as p is prime, these numbers are coprime to p
0 is not coprime to p

Q includes all the numbers in (mod p) coprime to p

now consider the set U, obtained by multiplying each element of Q by x (mod p)
< to coprime are Q element each x %TD_OPT%>both>

each element of U is coprime to p

< by prove we which distinct, is U %TD_OPT%>also,>
< not elements two assuming % TD_OPT%>start>
i = XQj (mod p) with i #j

Qi=Qj (mod p) as x #0
< distinct, is elements a this so % TD_OPT%>but>

elements of U are distinct

Visit : www.swarooppavi.tk
<>

<> <like just p, that p) in all uses %TD_OPT%>s0,>

U is a permutation of Q
U..Us ... Up.]_ = Q]_.Qz Qp.j_ (mod p)

XQ1.XQ2 ... XQp1 = Q1.Qz ... Qp1 (Mod p)
<> 1.Q2.. Qp1
xP1 =1 (mod p)

Using the code

This implementation of RSA uses 32 bit key. There are two files: input.htrm and output. htm. The code

for the input. htm file is as follows:

<html|>

<head>

<title>Input</title>

<script language="JavaScript">
<!-- hide from old browsers
function gcd (a, b)
{
varr;
while (b>0)
{
r=a%pb;
a=b;
b=r;
}

return a;

}

function rel_prime(phi)

{

var rel=5;

while (gcd(phi,rel)!=1)
rel++,
return rel;

}

Visit : www.swarooppavi.tk

function power(a, b)
{
var temp=1, i;
for(i=1;i<=b;i++)
temp*=a;

return temp;

function encrypt(N, e, M)
{
var r,i=0,prod=1,rem_mod=0;
while (e>0)
{
r=e % 2;
if (i++==0)
rem_mod=M % N;
else
rem_mod=power(rem_mod,2) % N;
if (r==1)
{
prod*=rem_maod;
prod=prod % N;
}
e=parselnt(e/2);

}

return prod,

function calculate_d(phi,e)
{
var x,y,x1,x2,y1,y2,temp,r,orig_phi;
orig_phi=phi;
x2=1;x1=0;y2=0;y1=1;
while (e>0)
{
temp=parselnt(phi/e);
r=phi-temp*e;
x=x2-temp*x1;
y=y2-temp*y1;
phi=e;e=r;
x2=x1;x1=x;

y2=y1;y1=y;

Visit : www.swarooppavi.tk
if (phi==1)
{
y2+=orig_phi;

break;

}

return y2;

function decrypt(c, d, N)
{
var r,i=0,prod=1,rem_mod=0;
while (d>0)
{
r=d % 2;
if (i++==0)
rem_mod=c % N;
else
rem_mod=power(rem_mod,2) % N;
if (r==1)
{
prod*=rem_maod;
prod=prod % N;
}
d=parselnt(d/2);
}

return prod,

function openNew()
{
var subWindow=window.open(
"Output.htm", "Obj","HEIGHT=400,WIDTH=600,SCROLLBARS=YES");
var p=parselnt(document.Input.p.value);
var g=parselnt(document.Input.q.value);
var M=parselnt(document.Input.M.value);
var N=p * q;
var phi=(p-1)*(a-1);
var e=rel_prime(phi);
var c=encrypt(N,e,M);
var d=calculate_d(phi,e);

subWindow.document.Output.N.value=N;

Visit : www.swarooppavi.tk
subWindow.document.Output.phi.value=phi;

subWindow.document.Output.e.value=g;
subWindow.document.Output.c.value=c;
subWindow.document.Output.d.value=d;

subWindow.document.Output.M.value=decrypt(c,d,N);

/I end scripting here -->

</script>

</head>

<body>

<p>Input Form</p>
<hr>
<form name="Input">
<table border="0" width="100%" height="109">
<tr>
<td width="24%" height="23">
Enter P</td>
<td width="76%" height="23">
<input type="text" name="p" size="20"></td>
</tr>
<tr>
<td width="24%" height="23">
Enter Q</td>
<td width="76%" height="23">
<input type="text" name="q" size="20"></td>
</tr>
<tr>
<td width="24%" height="20">
Enter any Number (M)</td>
<td width="76%" height="20"><input type="text" name="M" size="20">
(1-1000)</td>
</tr>
<tr>
<td width="24%" height="19"><input type="button"
value="Submit" name="Submit" onClick="openNew()"></td>
<td width="76%" height="19"><input type="reset"
value="Reset" name="Reset"></td>
</tr>

</table>

Visit : www.swarooppavi.tk
</form>

<p> </p>

</body>

</html>

The code for the oufput. htmfile is as follows:

<html|>

<head>

<title>Output</title>

</head>

<body>

<p>Output Form</p>
<hr>
<p>1. N=p * q
</p>
<p>2.
phi=(p-1)*(q-1
) </p>
<p>3. GCD
(phi, e) = 1</p>
<p>4.
Encrypted Text (¢) = M^e
* (mod N)</p>
<p>5.
e *d = 1 * (mod phi)</p>
<p>6.
Decrypted Text = c^d * (
mod N)</p>
<form name="Output">
<table border="0" width="100%">
<tr>
<td width="22%">N
</td>
<td width="78%"><input type="text" name="N"
size="20"></td>
</tr>

<tr>

Visit : www.swarooppavi.tk
<td width="22%">Phi</td>

<td width="78%"><input type="text"
name="phi" size="20"></td>
</tr>
<tr>
<td width="22%">e
</td>
<td width="78%">
<input type="text" name="e" size="20"></td>
</tr>
<tr>
<td width="22%">Encrypted Text
</td>
<td width="78%">
<input type="text" name="c" size="20"></td>
</tr>
<tr>
<td width="22%">d
</td>
<td width="78%"><input type="text" name="d" size="20">
</td>
</tr>
<tr>
<td width="22%">
Decrypted Text</td>
<td width="78%"><input type="text" name="M" size="20"></td>
</tr>
<tr>
<td width="22%">
<input type="button" value="Close" name="Close"
onClick="window.close()"></td>
<td width="78%"> </td>
</tr>
</table>
</form>

<p> </p>

</body>

</html>
Now, after creating the files you can run the /input.htm file from your browser and provide the

necessary values. Clicking the Submit button will open the oufput. htm file with the necessary outputs.

Visit : www.swarooppavi.tk

Compatibility of Code

The code has been tested on IE 4.0 and above as well as on Netscape Navigator.

Working of RSA Algorithm

Suppose that B wants to send a message to A. A and B have exchanged their public keys. Let us try

to understand how this works:

Person A selects two prime numbers. Say p =53 and q = 61.

Person A calculates p * q = 3233. This is the public key which he sends to B.

Person A calculates the value of e such that GCD ((p—-1)*(g-1), e) =1. This s also send to B.
Suppose person B wants to send message M =999 to A.

Person B encrypts the message, ¢ = M® (mod N) = 999" (mod 3233) = 3026.

Person B sends c to person A.

Person A decodes ¢ = 3026. Firstly, he findsd such thate *d=1(mod ((p-21)*(q-1)).

This equation is solved using Extended Euclidean Algorithm. Hence d = 1783.

Secondly, person A decodes the encrypted message ¢ using: ¢ (mod N) = 3026 (mod 3233) = 999.

©COoNo~LNE

Points of Interest

1. The factors of the public key N, that is, p and g should be large enough so that its not easy to factorize

N.

In general, the order of the primes should be 160 (512 bits) digits to 640 (2048 bits) digits.

3. No algorithm is available that could factorize a number of the mentioned order in reasonable amount of
time.

4. So the RSA algorithm is defended by the non-availability of such algorithms.

N

Conclusion

1. One has to use brute-force to factorize N.
2. The algorithms to factorize N have a running time exponential with respect to the length of N.
3. Still the existence of a faster algorithm, to factorize N, is very remote.

Further Suggestions

1. Possible attacks on RSA
2. Algorithm to find whether a number is prime or not (less time complexity algorithm).
3. Largest prime numbers in use.

| would suggest that the readers should try to work on these topics so as to learn more about the
RSA encryption scheme. | am having the necessary content, but | don't want to complicate the things

write now.

Visit : www.swarooppavi.tk

Implementations of RSA

S.S.L. (Secure Sockets Layer)
Firewalls

ATM machines

Digital Signatures
Certificates

	Introduction
	Mathematical Background€
	Modular Arithmetic
	Primality and Coprimality
	Chinese Remainder Theorem
	Fermat/Euler Theorem

	Using the code
	Compatibility of Code
	Working of RSA Algorithm
	Points of Interest
	Conclusion
	Further Suggestions
	Implementations of RSA

