
Foundations of AI
4. Informed Search Methods

Heuristics, Local Search Methods,
Genetic Algorithms

Bernhard Nebel and Luc De Raedt

Contents

• Best-First Search
• A* and IDA*
• Local Search Methods
• Genetic Algorithms

Best-First Search
Search procedures differ in the way they determine
the next node to expand.

Uninformed Search: Rigid procedure with no
knowledge of how “good” a node is.

Informed Search: Knowledge of the quality of a
given node in the form of an evaluation function h,
which assigns a real number to each node.

Best-First Search: Search procedure that expands
the node with the “best” (smallest) h-value.

General Algorithm

When Eval-Fn is always correct, we don’t need to
search!

Greedy Search
A possible way to judge the “worthiness” of a
node is to estimate its distance to the goal.

h(n) = estimated distance from n to the goal

The only real restriction is that h(n) = 0 if n is a
goal.

A best-first search with this function is called a
greedy best-first search.

Example for route-finding problem: h =
straight-line distance between two locations.

Greedy Search Example:
From Arad to Bucharest

Greedy Search from Arad to Bucharest
Problems with Greedy Search

• Does find suboptimal solutions
– Would be Arad – Sibiu – Rimnicu Vilcea –

Pitesti – Bucharest
• Can be misleading

– What happens if we want to go from Iasi to
Fagaras?

• Can be incomplete (if we do not detect
duplicates) in the above case

Heuristics
The evaluation function h in greedy searches is also called a
heuristic function or simply a heuristic.

• The word heuristic is derived from the Greek word
ħ∈υρισκ∈ιν (note also: H∈υρ∈κα!)

• The mathematician Polya introduced the word in the
context of problem solving techniques.

• In AI it has two meanings:

- Heuristics are fast but in certain situations incomplete
methods for problem-solving [Newell, Shaw, Simon
1963]

- Heuristics are methods that focus the search without
leading to incompleteness.

In all cases, the heuristic is problem-specific and focuses the
search!

A*: Minimization of the Total
Estimated Path Costs

A* combines the greedy search with the uniform-search strategy.

g(n) = actual cost from the initial state to n.

h(n) = estimated cost from n to the closest goal.

f(n) = g(n) + h(n), the estimated cost of the cheapest solution
through n.

Let h*(n) be the actual cost of the optimal path from n to the
closest goal.

h is admissible if the following holds for all n :

h(n) ≤ h*(n)

We require that for A*, h is admissible.

(Straight-line distance is admissible)

A* Search Example A* Search from Arad to
Bucharest

Optimality of A*
Claim: The first solution found in tree search has the
minimum path cost (for graph search it is more difficult)

Proof: Suppose there exists a goal node G with optimal path
cost C*, but A* has found first another node G2 with g(G2) >
C*, i.e. f(G2) > C*.

Let n be a node on the path from the start to G that has not
yet been expanded.

Since h is admissible, we have
f(n) = g(n) + h(n) ≤ C*.

Since

f(n) ≤ C* < f(G2),

n should have been expanded
first!

Graph Search
Two remedies:

•discard the more expensive path when revisiting node

•ensure that first path found to node is optimal (cf. uniform-
cost)

Monotonicity/Consistency: a heuristic is
consistent iff

Every consistent heuristic is admissible (exercise)

A* using graph search is optimal if heuristic is
consistent

nodes , ' () : () (') (, , ')n n succ n h n h n c n a n∀ ∈ ≤ +

Monotonicity
If h consistent then the values of f along a path
are non-decreasing:

This throws away information !!
We already knew that total cost on this path to
the goal is at least 9 (knowledge in node A)

(h:4)(h:4) 5 + 4 = 95 + 4 = 9AA
11

(h:2)(h:2) 6 + 2 = 86 + 2 = 8

AA

BB

Contours in A*
Within the search space, contours arise in which for the
given f-value all nodes are expanded.

Contours at f = 380, 400, 420

Completeness and Complexity
Completeness: If a solution exists, A* will find one,
provided that (1) every node has a finite number of
successor nodes, and (2) there exists a positive
constant δ such that every operator has at least cost
δ.

Only a finite number of nodes n with f(n) ≤ f*.

Complexity: In the case where |h*(n) – h(n)| ≤
O(log(h*(n)), only a sub-exponential number of nodes
will be expanded.
Normally, growth is exponential because the error is proportional
to the path costs. So, modify to look for suboptimal solutions and
allow non-admissible heuristics!

Iterative Deepening A* Search (IDA*)
Idea: A combination of IDS and A*. All nodes inside a contour are searched in a
DFS manner

RBFS: Recursive Best-First Search
Avoid re-evaluation of nodes but keep only O(bd) nodes in

memory

RBFS Example

How to Design a Heuristic

• Simplify the problem (by removing
restrictions), creating a relaxation:
– so that it becomes easy to solve
– usually leading to shorter solutions
– and making it easy to determine optimal solutions

for the relaxation
• Examples:

– straight line distance
– simplify movement restrictions in multi-body

problems (ignore collisions)
– ignore negative effects

Example Heuristics

h1 = the number of tiles in the wrong position
h2 = the sum of the distances of the tiles from their goal positions
(Manhatten distance)

Empirical Evaluation
for IDS vs. A*

• d = distance from goal
• Average over 100 instances

How to choose among
heuristics?

• Holds for our illustration
• The more dominant the heuristic the better it

approximates the real cost.
• Therefore, given 2 admissible heuristics,

2 1 1 2

2 1

If : () () and , both admissible
Then dominates and is better for search

n h n h n h h
h h

∀ ≥

1 2

1 2

Define : () max((), ())
 will dominate ,
n h n h n h n
h h h
∀ =

Local Search Methods
• In many problems, it is not possible to explore

the search space systematically.
• If a quality measure (or objective function) for

states is given, then local search can be
used to find solutions.

• Begin with a randomly-chosen
configuration/state and improve on it stepwise

Hill Climbing.
• Incomplete, but works for very large spaces.
• Has been used for IC design, scheduling,

network optimization, … , 8-queens, …

Hill Climbing

The Landscape: 2D Example Example: 8 Queens

An 8-queens state with
evaluation value 17
(violations), showing the value
for all successors (when
moving a queen in its column)

Problems with Local Search
Methods

• Local maxima: The algorithm finds a sub-optimal
solution.

• Plateaus (shoulders, flat local maxima): Here, the
algorithm can only explore at random (or exhaustively)

• Ridges: Similar to plateaus.
Solutions:
• Restart randomly when no progress is being made.
• “Inject noise” random walk
• Tabu search: Do not apply the last n operators.
Which strategies (with which parameters) prove

successful (within a problem class) can usually only
empirically be determined.

Simulated Annealing
In the simulated annealing algorithm,
“noise” is injected systematically: first a lot,
then gradually less.

Has been used since the early 80’s for VSLI
layout and other optimization problems.

Genetic Algorithms
Evolution appears to be very successful at finding good
solutions.

Idea: Similar to evolution, we search for solutions by “cross
over”, “mutation”, and “selection” successful solutions.

Ingredients:

• Coding of a solution into a string of symbols or bit-string

• A fitness function to judge the fitness of configurations

• A population of configurations

Example: 8-queens problem as a chain of 8 numbers. Fitness is
judged by the number of non-attacks. The population consists
of a set of arrangements of queens.

Selection, Mutation, and
Crossover

Example: 8-Queens Case-Study: Path Planning in
Robotic Soccer

Possible Approaches

• Reactive: Compute a motor control
command based on current observation
and goal location
– try to move towards the goal in a straight

line and drive around obstacles
– May get stuck in local optima

• Deliberative: Generate a (optimal) path
plan to the goal location

Simplifying Assumptions

• We do not want to / cannot solve the
continuous control problem

• Discretization: 10 cm, π/16, …
• Movements of other objects are known

(or assumed to be irrelevant)
• Adaptation to dynamic change is

achieved by continuous re-planning

Searching in 5D

• Consider the space generated by
– location (x,y)
– orientation (θ)
– translational velocity (v)
– Rotational velocity (ω)

• Search in this space using A* in order to find
the fastest way to the goal configuration
– Computationally too expensive even on current

hardware (250 msec for a 2m path, while we
needed around 10 msec on a 100 MHz Pentium)

Further simplifications

• Consider only 2D space (location) and
search for shortest path (ignoring
orientation)

• Assume regular shape: circle
• Reduce robot to point and use obstacle

growing
• Apply visibility graph method
• Solve by using A*

Obstacle Growing Navigating Around Circles

goal

The Visibility Graph:
Compute all common visible

tangents
Searching in the Visibility Graph

• The visibility map can now be searched as
we can search in a road map using straight
line distance as the heuristic estimate

• Note:
– State space is very limited
– Optimal solution is not necessarily an optimal

solution for the original problem
– Shortest path is neither the most safe nor the

fastest path

Summary (1)
• Heuristics focus the search
• Best-first search expands the node with the

highest worth (defined by any measure) first.
• With the minimization of the evaluated costs to

the goal h we obtain a greedy search.
• The minimization of f(n) = g(n) + h(n) combines

uniform and greedy searches. When h(n) is
admissible, i.e. h* is never overestimated, we
obtain the A* search, which is complete and
optimal.

Summary (2)
• There are many variations of A*
• Local search methods only ever work on

one state, attempting to improve it step-
wise.

• Genetic algorithms imitate evolution by
combining good solutions. General
contribution not clear yet.

• There are no turnkey solutions, you
always have to try and tweak

