Contents

Foundations of AI

4. Informed Search Methods

Heuristics, Local Search Methods, Genetic Algorithms Bernhard Nebel and Luc De Raedt

Best-First Search

- A* and IDA*
- Local Search Methods
- Genetic Algorithms

Best-First Search

Search procedures differ in the way they determine the next node to expand.

Uninformed Search: Rigid procedure with no knowledge of how "good" a node is.

Informed Search: Knowledge of the quality of a given node in the form of an *evaluation function h*, which assigns a real number to each node.

Best-First Search: Search procedure that expands the node with the "best" (smallest) *h*-value.

General Algorithm

Queueing- $Fn \leftarrow$ a function that orders nodes by EVAL-FN **return** GENERAL-SEARCH(*problem*, Queueing-Fn)

When *Eval-Fn* is always correct, we don't need to search!

Greedy Search

A possible way to judge the "worthiness" of a node is to estimate its distance to the goal.

h(n) = estimated distance from *n* to the goal

The only real restriction is that h(n) = 0 if n is a goal.

A best-first search with this function is called a greedy best-first search.

Example for *route-finding* problem: *h* = straight-line distance between two locations.

Greedy Search Example: From Arad to Bucharest

Greedy Search from Arad to Bucharest Arad h=366 Arac Sibiu 🔵 Timisoara 🐚 Zerind h=329 h=253 h=374 C Zerind Timisoara Ò h=329 h=374 Arad Rimnicu Arad Fagaras 🍏 Oradea 🍗 h=366h=178

Arad Fagaras

Sibiu

h=253

h=366

h=193

Sibiu

Oradea

Bucharest

h = 380

h=0

Contraction Contraction

h=374

Timisoara 🍗

h=329

h=193

Rimnicu

h = 380

Problems with Greedy Search

- Does find suboptimal solutions
 - Would be Arad Sibiu Rimnicu Vilcea -Pitesti – Bucharest
- Can be misleading
 - What happens if we want to go from lasi to Fagaras?
- Can be incomplete (if we do not detect duplicates) in the above case

Heuristics

The evaluation function *h* in greedy searches is also called a *heuristic function* or simply a *heuristic*.

- The word *heuristic* is derived from the Greek word ħευρισκειν (note also: *H*ευρεκα!)
- The mathematician Polya introduced the word in the context of problem solving techniques.
- In AI it has two meanings:
 - Heuristics are fast but in certain situations incomplete methods for problem-solving [Newell, Shaw, Simon 1963]
 - Heuristics are methods that focus the search without leading to incompleteness.

 \rightarrow In all cases, the heuristic is *problem-specific* and *focuses* the search!

A*: Minimization of the Total Estimated Path Costs

A* combines the greedy search with the uniform-search strategy.

 $g(n) = \arctan \cosh n$.

h(n) = estimated cost from *n* to the closest goal.

f(n) = g(n) + h(n), the estimated cost of the cheapest solution through *n*.

Let $h^*(n)$ be the *actual cost* of the optimal path from *n* to the closest goal.

h is *admissible* if the following holds for all *n* :

 $h(n) \leq h^*(n)$

We require that for A*, *h* is admissible. (Straight-line distance is admissible)

A* Search Example

366

0

160

242

161

178

77

151 226

244

241

234

380

98

193

253

329

80

199

374

A* Search from Arad to Bucharest

Optimality of A*

Claim: The first solution found in *tree search* has the minimum path cost (for *graph search* it is more difficult)

Proof: Suppose there exists a goal node G with optimal path cost C^* , but A* has found first another node G_2 with $g(G_2) > C^*$, i.e. $f(G_2) > C^*$.

Let *n* be a node on the path from the start to G that has not yet been expanded.

Since *h* is admissible, we have

 $f(n) = g(n) + h(n) \leq C^*.$

Since

 $f(n) \leq C^* < f(G_2),$

n should have been expanded first!

Graph Search

Two remedies:

discard the more expensive path when revisiting node
ensure that first path found to node is optimal (cf. uniform-cost)

Monotonicity/Consistency: a heuristic is consistent iff

 $\forall \text{nodes } n, n' \in succ(n) : h(n) \le h(n') + c(n, a, n')$

Every consistent heuristic is admissible (exercise)

A* using graph search is optimal if heuristic is consistent

Monotonicity

If h consistent then the values of f along a path are non-decreasing:

(h:4)
$$5+4=9$$

1
(B) (h:2) $6+2=8$

This throws away information !! We already knew that total cost on this path to the goal is at least 9 (knowledge in node A)

Contours in A*

Within the search space, contours arise in which for the given *f*-value all nodes are expanded.

Contours at f = 380, 400, 420

Completeness and Complexity

Completeness: If a solution exists, A* will find one, provided that (1) every node has a finite number of successor nodes, and (2) there exists a positive constant δ such that every operator has at least cost δ .

→ Only a finite number of nodes *n* with $f(n) \le f^*$.

Complexity: In the case where $|h^*(n) - h(n)| \le O(log(h^*(n)))$, only a sub-exponential number of nodes will be expanded.

Normally, growth is exponential because the error is proportional to the path costs. So, modify to look for suboptimal solutions and allow non-admissible heuristics!

Iterative Deepening A* Search (IDA*)

Idea: A combination of IDS and A*. All nodes inside a contour are searched in a DFS manner

RBFS: Recursive Best-First Search

Avoid re-evaluation of nodes but keep only *O(bd)* nodes in memory

- **function** RECURSIVE-BEST-FIRST-SEARCH(*problem*) **returns** a solution, or failure RBFS(*problem*, MAKE-NODE(INITIAL-STATE[*problem*]), ∞)
- $\begin{array}{l} \textbf{function RBFS}(problem, node, f_limit) \textbf{ returns a solution, or failure and a new f-cost limit}\\ \textbf{if GOAL-TEST}[problem](state) \textbf{ then return } node\\ successors \leftarrow \texttt{EXPAND}(node, problem)\\ \textbf{if successors is empty then return } failure, \infty\\ \textbf{for each s in successors do}\\ f[s] \leftarrow \max(g(s) + h(s), f[node])\\ \textbf{repeat}\\ best \leftarrow \textbf{the lowest } f$-value node in successors\\ \textbf{if } f[best] > f_limit \textbf{ then return } failure, f[best]\\ alternative \leftarrow \textbf{the second-lowest } f$-value among successors \\ \end{array}$

 $result, f[best] \leftarrow RBFS(problem, best, min(f_limit, alternative))$

if $result \neq failure$ then return result

How to Design a Heuristic

- Simplify the problem (by removing restrictions), creating a relaxation:
 - so that it becomes easy to solve
 - usually leading to shorter solutions
 - and making it easy to determine optimal solutions for the relaxation
- Examples:
 - straight line distance
 - simplify movement restrictions in multi-body problems (ignore collisions)
 - ignore negative effects

Example Heuristics

 h_1 = the number of tiles in the wrong position h_2 = the sum of the distances of the tiles from their goal positions (Manhatten distance)

Empirical Evaluation for IDS vs. A*

- *d* = distance from goal
- Average over 100 instances

	Search Cost			Effective Branching Factor		
d	IDS	$A^*(h_1)$	$A^{*}(h_{2})$	IDS	$\mathbf{A}^{*}(h_{1})$	$A^*(h_2)$
2	10	6	6	2.45	1.79	1.79
4	112	13	12	2.87	1.48	1.45
6	680	20	18	2.73	1.34	1.30
8	6384	39	25	2.80	1.33	1.24
10	47127	93	39	2.79	1.38	1.22
12	364404	227	73	2.78	1.42	1.24
14	3473941	539	113	2.83	1.44	1.23
16	_	1301	211	-	1.45	1.25
18	-	3056	363	-	1.46	1.26
20	-	7276	676	-	1.47	1.27
22	-	18094	1219	-	1.48	1.28
24	-	39135	1641	-	1.48	1.26

How to choose among heuristics?

If $\forall n : h_2(n) \ge h_1(n)$ and h_1, h_2 both admissible Then h_2 dominates h_1 and is better for search

- · Holds for our illustration
- The more dominant the heuristic the better it approximates the real cost.
- Therefore, given 2 admissible heuristics,

Define $\forall n : h(n) = \max(h_1(n), h_2(n))$ *h* will dominate h_1, h_2

Local Search Methods

- In many problems, it is not possible to explore the search space systematically.
- If a quality measure (or objective function) for states is given, then local search can be used to find solutions.
- Begin with a randomly-chosen configuration/state and improve on it stepwise
 → Hill Climbing.
- Incomplete, but works for very large spaces.
- Has been used for IC design, scheduling, network optimization, ..., 8-queens, ...

Hill Climbing

current ← MAKE-NODE(INITIAL-STATE[problem]) loop do next ← a highest-valued successor of current if VALUE[next] < VALUE[current] then return current current ← next end

The Landscape: 2D Example

Example: 8 Queens

An 8-queens state with evaluation value 17 (violations), showing the value for all successors (when moving a queen in its column)

Problems with Local Search Methods

- *Local maxima*: The algorithm finds a sub-optimal solution.
- *Plateaus (shoulders, flat local maxima)*: Here, the algorithm can only explore at random (or exhaustively)
- Ridges: Similar to plateaus.

Solutions:

- *Restart randomly* when no progress is being made.
- "Inject noise" → random walk
- Tabu search: Do not apply the last *n* operators.

Which strategies (with which parameters) prove successful (within a problem class) can usually only empirically be determined.

Simulated Annealing

In the simulated annealing algorithm, "noise" is injected systematically: first a lot, then gradually less.

inputs: problem, a problem schedule, a mapping from time to "temperature" static: current, a node next, a node T a "temperature" controlline the probability of downward steps
schedule, a mapping from time to "temperature" static: current, a node next, a node T. a 'temperature'' controlling the probability of downward steps
<pre>static: current, a node next, a node T a "temperature" controlling the probability of downward steps</pre>
<i>next</i> , a node <i>T</i> , a "temperature" controlling the probability of downward steps
T. a "temperature" controlling the probability of downward steps
real temperature controlling the production of a control and steps
$current \leftarrow MAKE-NODE(INITIAL-STATE[problem])$
for $t \leftarrow 1$ to ∞ do
$T \leftarrow schedule[t]$
if T=0 then return current
next
$\Delta E \leftarrow VALUE[next] - VALUE[current]$
if $\Delta E > 0$ then $current \leftarrow next$
else current \leftarrow next only with probability $e^{\Delta ET}$

Has been used since the early 80's for VSLI layout and other optimization problems.

Genetic Algorithms

Evolution appears to be very successful at finding good solutions.

Idea: Similar to evolution, we search for solutions by "cross over", "mutation", and "selection" successful solutions.

Ingredients:

- · Coding of a solution into a string of symbols or bit-string
- · A fitness function to judge the fitness of configurations
- A population of configurations

Example: 8-queens problem as a chain of 8 numbers. Fitness is judged by the number of non-attacks. The population consists of a set of arrangements of queens.

Selection, Mutation, and Crossover

Case-Study: Path Planning in Robotic Soccer

Possible Approaches

- Reactive: Compute a motor control command based on current observation and goal location
 - try to move towards the goal in a straight line and drive around obstacles
 - May get stuck in local optima
- Deliberative: Generate a (optimal) path plan to the goal location

Simplifying Assumptions

- We do not want to / cannot solve the continuous control problem
- Discretization: 10 cm, π/16, ...
- Movements of other objects are known (or assumed to be irrelevant)
- Adaptation to dynamic change is achieved by continuous re-planning

Searching in 5D

- Consider the space generated by
 - location (*x*,*y*)
 - orientation (θ)
 - translational velocity (v)
 - Rotational velocity (ω)
- Search in this space using A^{*} in order to find the fastest way to the goal configuration
 - Computationally too expensive even on current hardware (250 msec for a 2m path, while we needed around 10 msec on a 100 MHz Pentium)

Further simplifications

- Consider only 2D space (location) and search for shortest path (ignoring orientation)
- Assume regular shape: circle
- Reduce robot to point and use obstacle growing
- Apply visibility graph method
- Solve by using A^{*}

Obstacle Growing

Navigating Around Circles

The Visibility Graph: Compute all common visible tangents

Searching in the Visibility Graph

- The visibility map can now be searched as we can search in a road map using straight line distance as the heuristic estimate
- Note:
 - State space is very limited
 - Optimal solution is not necessarily an optimal solution for the original problem
 - Shortest path is neither the most safe nor the fastest path

Summary (1)

- Heuristics focus the search
- Best-first search expands the node with the highest worth (defined by any measure) first.
- With the minimization of the evaluated costs to the goal *h* we obtain a greedy search.
- The minimization of f(n) = g(n) + h(n) combines uniform and greedy searches. When h(n) is admissible, i.e. h* is never overestimated, we obtain the A* search, which is complete and optimal.

Summary (2)

- There are many variations of A*
- Local search methods only ever work on one state, attempting to improve it stepwise.
- Genetic algorithms imitate evolution by combining good solutions. General contribution not clear yet.
- There are no turnkey solutions, you always have to try and tweak