Foundations of Al

4. Informed Search Methods

Heuristics, Local Search Methods,

Genetic Algorithms
Bernhard Nebel and Luc De Raedt

Contents

Best-First Search

A* and IDA*

Local Search Methods
Genetic Algorithms

Best-First Search

Search procedures differ in the way they determine
the next node to expand.

Uninformed Search: Rigid procedure with no
knowledge of how “good” a node is.

Informed Search: Knowledge of the quality of a
given node in the form of an evaluation function h,
which assigns a real number to each node.

Best-First Search: Search procedure that expands
the node with the “best” (smallest) h-value.

General Algorithm

function BEST-FIRST-SEARCH(problem, EVAL-FN) returns a solution sequence
inputs: problem, a problem
Eval-Fn, an evaluation function

Queueing-Fn < a function that orders nodes by EVAL-FN
return GENERAL-SEARCH(problem, Queueing-Fn)

When Eval-Fn is always correct, we don’t need to
search!

Greedy Search

A possible way to judge the “worthiness” of a
node is to estimate its distance to the goal.

h(n) = estimated distance from n to the goal

The only real restriction is that h(n) =0 ifnis a
goal.

A best-first search with this function is called a
greedy best-first search.

Example for route-finding problem: h =
straight-line distance between two locations.

Greedy Search Example:
From Arad to Bucharest

1o Bucharest
Arad
Bucharest
Craiova
Dobreta
Eforie
Fagaras
Giurgiu
Hirsova
Lasi

Lugoj
Mehadia
Neamt
Oradea
Pitesti
Rimnicu Vilcea
Sibiu
Timisoara
Urziceni
Vaslui
Zerind

Straighi=line distance

366
0
160
242
161
178
77
151
226
244
241
234
380
98
193
253
329
20
199
314

Greedy Search from Arad to Bucharest

Arad @
h=366

Arad
S[biu.& Zerind

h=253 h=329 h=374

Arad

Zerind

h=329 h=374

Zerind
h=374

Arad Rimnic:

h=380 h=193

Sibiu Bucharest
h=253 h=0)

Problems with Greedy Search

Does find suboptimal solutions

— Would be Arad — Sibiu — Rimnicu Vilcea —
Pitesti — Bucharest

« Can be misleading
— What happens if we want to go from lasi to
Fagaras?
» Can be incomplete (if we do not detect
duplicates) in the above case

Heuristics

The evaluation function h in greedy searches is also called a
heuristic function or simply a heuristic.

* The word heuristic is derived from the Greek word
hevpiokev (note also: Hevpexkal)

* The mathematician Polya introduced the word in the
context of problem solving techniques.

* In Al it has two meanings:

- Heuristics are fast but in certain situations incomplete
methods for problem-solving [Newell, Shaw, Simon
1963]

- Heuristics are methods that focus the search without
leading to incompleteness.

- In all cases, the heuristic is problem-specific and focuses the
search!

A*: Minimization of the Total
Estimated Path Costs

A* combines the greedy search with the uniform-search strategy.
g(n) = actual cost from the initial state to n.
h(n) = estimated cost from n to the closest goal.

f(n) = g(n) + h(n), the estimated cost of the cheapest solution
through n.

Let h*(n) be the actual cost of the optimal path from n to the
closest goal.

h is admissible if the following holds for all n :
h(n) <h*(n)
We require that for A*, h is admissible.

(Straight-line distance is admissible)

A* Search Example

10 Bucharest
Arad
Bucharest
Craiova
Dobreta
Eforie
Fagaras
Giurgin
Hirsova
Tasi

Lugoj
Mehadia
Neamt
Oradea
Pitesti
Rimnicu Vilcea
Sibiu
Timisoara
Urziceni
Vaslui
Zerind

Straight=line distance

366
0
160
242
161
178
7
151
226
244
241
234
380
98
193
253
329
80
199
374

A* Search from Arad to
Bucharest

Arad

F=0+366 Arad

=366

Sibiu Timisoara Zerind
f=140+253 f=118+329 =75+374 Arad
=393 =447 =449

Sibiu Timiscara Zerind

f=118+329 1=75+374
=47 =449

Arad Arad
[=2804 366 [=239+178 I=146+ 380 [=2204193
=66 =417 =526 =413

Zerint

=118+329 [=75+374
=449

[=280+366 1=239+178 f=146+380
=417 =526

Pitesti

=366+ 160 f=317+98 =300+
=326 =415 =533

|] L] *
Optimality of A
Claim: The first solution found in tree search has the
minimum path cost (for graph search it is more difficult)

Proof: Suppose there exists a goal node G with optimal path
cost C*, but A* has found first another node G, with g(G,) >
C* i.e. f(G,) > C*.

Let n be a node on the path from the start to G that has not

yet been expanded.
Start Since h is admissible, we have

A f(n) = g(n) + h(n) <C*.

n Since

f(n) <C*<f(G,),
C@® G,
n should have been expanded
first!

Graph Search
Two remedies:

«discard the more expensive path when revisiting node

sensure that first path found to node is optimal (cf. uniform-
cost)

Monotonicity/Consistency: a heuristic is
consistent iff

Vnodes n,n'e€ succ(n): h(n) < h(n')+c(n,a,n')

Every consistent heuristic is admissible (exercise)

A* using graph search is optimal if heuristic is
consistent

Monotonicity

If h consistent then the values of f along a path
are non-decreasing:

@ (h:4) 5+4=9
1
B)(h:2) 6+2=8

This throws away information !!
We already knew that total cost on this path to
the goal is at least 9 (knowledge in node A)

Contours in A*

Within the search space, contours arise in which for the

given f-value all nodes are expanded.

Contours at f = 380, 400, 420

Completeness and Complexity

Completeness: If a solution exists, A* will find one,
provided that (1) every node has a finite number of
successor nodes, and (2) there exists a positive
constant 6 such that every operator has at least cost
d.

- Only a finite number of nodes n with f(n) <f*.

Complexity: In the case where |h*(n) — h(n)| <
O(log(h*(n)), only a sub-exponential number of nodes
will be expanded.

Normally, growth is exponential because the error is proportional

to the path costs. So, modify to look for suboptimal solutions and
allow non-admissible heuristics!

lterative Deepening A* Search (IDA*)

Idea: A combination of IDS and A*. All nodes inside a contour are searched in a
DFS manner

Tunction IDA*(probfem) returns a solulion sequence
inpuls: problem, a problem
static: f-limiz, the corrent /- COST limit
root, a node

root <+~ MAKE-NODE(INITIAL-STATE[problem]}
fimit + f- Cos1(root)
loop do
solution. f-limit « DUS-CONTOUR(ront. [-limit)
il solution is non-null then return solution
if f-limit = oc then return failurc; end

Tunction DI'S-CONTOUR(node, f-limit) returns a solution sequence and u new f- COST limit
inpuls: node, a node
[f-timit, the current f- COST limit
static: next-f, the f- COST limit for the next contour, initially oc

il f- CosT[rode) > f-limit then return null, f- CosT[rode]
il GOAL-TEST[problem](STATE[node]) then return node, f-limit
for cach node s in SUCCESSCRS(node) do
solution, new-{ «— DFS-CONTOUR(s. f-limi1)
if solution is non-null then return solution, {-limit
next-f < MIN(next-f, new-f); end
return null, next-f

RBFS: Recursive Best-First Search

Avoid re-evaluation of nodes but keep only O(bd) nodes in
memory

function RECURSIVE-BEST-FIRST-SEARCH(problem) returns a solution, or failure
RBFS(problem, MAKE-NODE(INITIAL-STATE[problem]), oo)

function RBFS(problem, node, f_limit) returns a solution, or failure and a new f-cost limit

if GOAL-TEST| problem](state) then return node

suceessors +— BEXPAND(node, problem)

if successors is empty then return failure, oc

for each s in successors do
fls] —max(g(s) + h(s), frode])

repeat
best — the lowest f-value node in successors
if f[best] > f-limit then return failure, f[best]
alternative +— the second-lowest f-value among successors
resull, [[best] < RBFS(problem, best, min(f_limit, alternative))
if result # failure then return result

RBFS Example

(a) After expanding Atad, Sibiu, Rimnicu Vileea

(b) After unwinding back to Sibin
and expanding Fagaras 66

() After switching back to Rimnicu Vilcea
and expanding Pitesti e L

How to Design a Heuristic

+ Simplify the problem (by removing
restrictions), creating a relaxation:
— so that it becomes easy to solve
— usually leading to shorter solutions
— and making it easy to determine optimal solutions
for the relaxation
* Examples:
— straight line distance

— simplify movement restrictions in multi-body
problems (ignore collisions)

— ignore negative effects

Example Heuristics

5 4 1 2 3

6 1 8 8 4

7 3 2 7 6 5
Start State Goal Statc

h, = the number of tiles in the wrong position
h, = the sum of the distances of the tiles from their goal positions
(Manhatten distance)

Empirical Evaluation
for IDS vs. A’

* d = distance from goal
» Average over 100 instances

Search Cost Effective Branching Factor

d DS A*(hy) A*(hy) DS A*(hy) A*(hp)

2 10 6 6 2.45 1.79 1.79

4 112 13 12 2.87 1.48 1.45

6 680 20 18 273 134 1.30

8 6384 39 25 2.80 133 124
10 47127 93 39 2.79 1.38 122
12 364404 227 73 278 142 124
14 3473941 539 113 2.83 1.44 123
16 - 1301 211 - 1.45 1.25
18 - 3056 363 - 1.46 1.26
20 - 7276 676 - 1.47 1.27
22 - 18094 1219 - 1.48 1.28
24 - 39135 1641 - 1.48 1.26

How to choose among
heuristics?

If Va:h,(n) = h/(n) and A, h, both admissible

Then A, dominates /4, and 1s better for search

* Holds for our illustration

 The more dominant the heuristic the better it
approximates the real cost.

* Therefore, given 2 admissible heuristics,

Define Vn : h(n) = max(h,(n), h,(n))
h will dominate 4,, i,

Local Search Methods

In many problems, it is not possible to explore
the search space systematically.

If a quality measure (or objective function) for
states is given, then local search can be
used to find solutions.

Begin with a randomly-chosen
configuration/state and improve on it stepwise
-> Hill Climbing.

Incomplete, but works for very large spaces.

Has been used for IC design, scheduling,
network optimization, ... , 8-queens, ...

Hill Climbing

function HILL-CLIMBING(problem) returns a solution state
inputs: problem, a problem
static: current, a node
next, a node

current < MAKE-NODE(INITIAL-STATE[problem])

loop do
next < a highest-valued successor of current
if VALUE[next] < VALUE[current] then return current
current < next

end

The Landscape: 2D Example

objective function global maxirmm

A e

shoulder

local maximmim

"flat" local maximmim

#-state space

cument
state

Example: 8 Queens

18

14

w yiﬁ
W 61 1= 58S W s W

fig| 14 13 | i8] 14 . An 8-queens state with
16 15 ([i8 | 14 8| 16 evaluation value 17
- (violations), showing the value
2| s 15 8| 14
for all successors (when

14 w 16 16| moving a queen in its column)

17

w 15 W
14 17 |[i2)| 14 (2| 18

Problems with Local Search Simulated Annealing

Methods In the simulated annealing algorithm,
+ Local maxima: The algorithm finds a sub-optimal “noise” is injected systematically: first a lot,
solution. then gradually less.
» Plateaus (shoulders, flat local maxima): Here, the
algorithm can only explore at random (or exhaustively) B
+ Ridges: Similar to plateaus. oo
Solutions: N
* Restart randomly when no progress is being made. e schediel
* “Inject noise” - random walk m_—:“:r": \'4|f
+ Tabu search: Do not apply the last n operators. el currnt . neeony with probabilty 27
Which strategies (with which parameters) prove
successful (within a problem class) can usually only Has been used since the early 80’s for VSLI
empirically be determined. layout and other optimization problems.

Genetic Algorithms Selection, Mutation, and
Crossover

Evolution appears to be very successful at finding good e

solutions. [o® ®
| Papulafion

iy] o8

Idea: Similar to evolution, we search for solutions by “cross

over”, “mutation”, and “selection” successful solutions.

Ealection ol indwd uals
according 1o fitness function
and mafing

Ingredients:

* Coding of a solution into a string of symbols or bit-string

Crossovoer Determmation of crossover poni

+ A fitness function to judge the fithess of configurations

lz[2]s[=le]zleloe] [MfulEfEH] A recomiinaton
BECEUE

» A population of configurations L

Example: 8-queens problem as a chain of 8 numbers. Fitness is
judged by the number of non-attacks. The population consists
of a set of arrangements of queens.

With & led small probatliy

Mutation
(EREEFHT] somathing in the bit etring
TERRREF AT is changed

_ Case-Study: Path Planning in
Example: 8-Queens Robotic Soccer

B i te "L

24 31%__[32752411 [32748552] 3274¢[Tp2 | .] .
23 29% | 24748552 | 24752411 |—{ 24752411 | ® ‘
20 26% [327523411 [32752124 —{ 3b2124] .
1 124415124 [24415811 |—{ 2441541
Tnitial Pz;ulation Fitneslstlunction Selilion Clcs:::)\'el' Mu:lion
Possible Approaches Simplifying Assumptions
» Reactive: Compute a motor control » We do not want to / cannot solve the
command based on current observation continuous control problem
and goal location - Discretization: 10 cm, /186, ...
— try to move towards the goal in a straight - Movements of other objects are known
line and drive aroun tacl .
e and drive a_' ound Obs_ac s (or assumed to be irrelevant)
— May get stuck in local optima . : .
Deliberative: Generate a (optimal) path « Adaptation to dynamic change is
- senerate a (optimal) pa achieved by continuous re-planning

plan to the goal location

Searching in 5D

» Consider the space generated by
— location (x,y)
— orientation (6)
— translational velocity (v)
— Rotational velocity ()
 Search in this space using A" in order to find
the fastest way to the goal configuration

— Computationally too expensive even on current
hardware (250 msec for a 2m path, while we
needed around 10 msec on a 100 MHz Pentium)

Further simplifications

Consider only 2D space (location) and
search for shortest path (ignoring
orientation)

Assume regular shape: circle

Reduce robot to point and use obstacle
growing

Apply visibility graph method

Solve by using A’

Obstacle Growing

°g°%

Navigating Around Circles

o ‘ @
goal

The Visibility Graph:
Compute all common visible
tangents

Searching in the Visibility Graph

The visibility map can now be searched as
we can search in a road map using straight
line distance as the heuristic estimate

Note:
— State space is very limited

— Optimal solution is not necessarily an optimal
solution for the original problem

— Shortest path is neither the most safe nor the
fastest path

Summary (1)

Heuristics focus the search

Best-first search expands the node with the
highest worth (defined by any measure) first.

With the minimization of the evaluated costs to
the goal h we obtain a greedy search.

The minimization of f(n) = g(n) + h(n) combines
uniform and greedy searches. When h(n) is
admissible, i.e. h* is never overestimated, we
obtain the A* search, which is complete and
optimal.

Summary (2)

There are many variations of A*

Local search methods only ever work on
one state, attempting to improve it step-
wise.

Genetic algorithms imitate evolution by
combining good solutions. General
contribution not clear yet.

There are no turnkey solutions, you
always have to try and tweak

