
Semantics
of Propositional Logic
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Problem

How do we know we have all the required rules for natural
deduction?

Peirce gave an example of a theorem using only →, whose proof
needs ⊥ as well.

Could we prove even more theorems of PROP by introducing
more connectives,
or more rules for the given connectives?
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Peirce’s Law (((φ→ ψ) → φ) → φ)

φ
❦1

� ✘✘✘
✘✘✘(φ→ ⊥)

❦2

⊥
(→E)

ψ
(RAA)

❦1 (→I)
(φ→ ψ) ((φ→ ψ) → φ)✥✥✥

✥✥✥
✥✥ ❦3

φ ✘✘✘
✘✘✘(φ→ ⊥)

❦2

(→E)
❦2

⊥
(RAA)

φ❦3 (→I)
(((φ→ ψ) → φ) → φ)
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Charles S. Peirce
USA 1839–1914

One of the major
inventors of semantics
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David Hilbert
Germany 1862–1943

To show a sequent shouldn’t be
provable, give an interpretation
of the formulas so that
the hypotheses are true
and the conclusion is false.
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Example: To show that the sequent (p0 → p1) � p1 shouldn’t be
provable.

Interpret both p0 and p1 as meaning:

2 = 3.

Then p1 is false, but (p0 → p1) says

If 2=3 then 2=3,

which is true.

So we mustn’t introduce a rule which would deduce p1 from
(p0 → p1).
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In mathematics we count ‘If φ then ψ’ as true whenever φ is false.
For example we accept as true that:

If p is a prime > 2 then p is odd.

For example

If 3 is a prime > 2 then 3 is odd. (If TRUE then TRUE.)

But also

If 9 is a prime > 2 then 9 is odd. (If FALSE then TRUE.)

If 4 is a prime > 2 then 4 is odd. (If FALSE then FALSE.)

The one case we exclude is ‘If TRUE then FALSE’.
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Moral: To show that (p0 → p1) � p1 ought not to be provable,
we can interpret p0 and p1 as any two false statements.

The statements themselves don’t matter;
only their truth values (T = True or F = False) matter.

The truth value of (φ→ ψ) is determined by those of φ and ψ
by the truth table

φ ψ (φ→ ψ)

T T T

T F F

F T T

F F T
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Similarly we can give truth tables for all the connectives:

φ ψ (φ ∧ ψ) (φ ∨ ψ) (φ→ ψ) (φ↔ ψ) (¬φ) ⊥
T T T T T T F F

T F F T F F

F T F T T F T

F F F F T T
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By a truth valuation we mean a function v that assigns a truth
value
(T or F) to each proposition, in such a way that the truth tables
hold.

For example if v(p1) = T and v(p2) = F,
then v((p1 ∧ p2)) = F and v((p1 ∨ p2)) = T.

If v((p1 ↔ p2)) = F then
either v(p1) = T and v(p2) = F, or v(p1) = F and v(p2) = T.
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Let S be a set of propositional symbols.

By an S-assignment we mean a function a which assigns truth
values to the propositional symbols in S.

We say that a truth valuation v extends the S-assignment a if for
every propositional symbol p in S, v(p) = a(p).
(This is the usual notion of one function extending another.)
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Valuation Theorem (equivalent to Chiswell Proposition (2.8))
Let a be an S-assignment.
Then there is a truth valuation v that extends a.
Moreover if φ is a proposition whose propositional symbols
come from S, then we can calculate the value v(φ) from φ and a;
so if v′ is another truth valuation extending a then v′(φ) = v(φ).

Proof. First let φ be any proposition whose symbols come from
S.
We show how to calculate v(φ), by induction on the length of φ.

If φ is a propositional symbol then v(φ) = a(φ).

If φ is ⊥ then v(⊥) = F.
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If φ is (¬χ) then φ determines χ uniquely,
by the unique readability lemma.
Also χ uses only propositional symbols in S.
By induction hypothesis we can calculate v(χ) from χ and a,
and hence from φ and a.
Then by the truth table for ¬,
v(φ) must be T if v(χ) = F, and F if v(χ) = T.

A similar argument applies if φ is (ψ�χ) where � is
one of ∧, ∨, → and ↔.
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Now let b be an assignment which extends a
and assigns a truth value to each propositional symbol.
Then the argument above, with b in place of a, shows
how to calculate v(φ) for every proposition φ.
The calculation ensures that v is a truth valuation.

Since b extends a, v also extends a.
For each proposition φ whose propositional symbols come from
S,
the calculation of v(φ) is exactly as before. �
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The value v(φ) in the theorem depends only on φ and a,
so we write it as a�(φ).
We call a�(φ) the truth value of φ at a (or at v).

By the proof of the theorem, we can calculate the truth value of φ
at a
by climbing step by step up the parsing tree of φ.
We can keep track of the calculation by writing the truth values
of the subformulas under appropriate symbols in φ.
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Example: We calculate the truth value of (p1 ∧ (¬(p0 → p1)))
under the assignment a(p0) = F, a(p1) = T:

❜F ∧

✑
✑
✑
✑✑

❜T p1 ◗
◗
◗
◗◗

❜F ¬

❜T →

�
�
�

❜F p0 ❅
❅
❅

❜T p1

p0 p1 (p1 ∧ (¬ (p0 → p1)))

F T T F F F T T

16



Let S be a finite set consisting of n propositional letters.
Then the number of S-assignment is 2n (why?).
We can do the same calculation simultaneously for each
assignment, in a table as follows.
Note how the S-assignments are listed at the left.

p0 p1 (p1 ∧ (¬ (p0 → p1)))

T T T T T

T F F T F

F T T F T

F F F F F
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p0 p1 (p1 ∧ (¬ (p0 → p1)))

T T T F F T T T

T F F F T T F F

F T T F F F T T

F F F F F F T F

The bold column shows that this proposition is false at every
{p0, p1}-assignment, and hence at every truth valuation.
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A lot of notions are defined in terms of truth valuations.

(1) We say that a proposition φ is a tautology if it is true at every
truth valuation.

(2) We say that it is a contradiction if it is false at every truth
valuation, and satisfiable if it is not a contradiction.

(3) We say that two propositions φ and ψ are equivalent, in
symbols

φ eq ψ,

if v(φ) = v(ψ) for every truth valuation v.
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We say that a truth valuation v is a model of the proposition φ if
v(φ) = T.
We say that v is a model of the set of propositions Γ if v is a model
of every proposition in Γ.
We say that Γ semantically entails φ, or that φ is a semantic
consequence of Γ, in symbols

Γ |= φ,

if every model of Γ is also a model of φ.

The symbol |= is called semantic turnstile.
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Then φ is a tautology if and only if |= φ

(i.e. if the empty set semantically entails φ).

φ eq ψ if and only if both {φ} |= ψ and {ψ} |= φ.

φ is a contradiction if and only if {φ} |= ⊥.

φ is satisfiable if and only if φ has a model.
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Examples of Tautologies

(1) ((p1 → p2) ↔ ((¬p2) → (¬p1))).

(2) ((p1 → (¬p1)) ↔ (¬p1)).

(3) (p1 ∨ (¬p1)).

(4) (⊥ → p1).

(5) ((p1 → (p2 → p3)) ↔ ((p1 ∧ p2) → p3)).
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Examples of Equivalences

(1) Associative laws:
p1 ∨ (p2 ∨ p3) eq (p1 ∨ p2) ∨ p3,

p1 ∧ (p2 ∧ p3) eq (p1 ∧ p2) ∧ p3.

(2) Distributive laws:
p1 ∨ (p2 ∧ p3) eq (p1 ∨ p2) ∧ (p1 ∨ p3),

p1 ∧ (p2 ∨ p3) eq (p1 ∧ p2) ∨ (p1 ∧ p3).

(3) Commutative laws:
p1 ∨ p2 eq p2 ∨ p1,

p1 ∧ p2 eq p2 ∧ p1.

(4) De Morgan laws:
¬(p1 ∨ p2) eq ¬p1 ∧ ¬p2,

¬(p1 ∧ p2) eq ¬p1 ∨ ¬p2.

(5) Idempotence laws:
p1 ∨ p1 eq p1,

p1 ∧ p1 eq p1.

(6) Double negation: ¬¬p1 eq p1.
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p1 p2 p3 p1 ∨ (p2 ∨ p3) (p1 ∨ p2) ∨ p3,

T T T T T T T T T T T T T

T T F T T T T F T T T T F

T F T T T F T T T T F T T

T F F T T F F F T T F T F

F T T F T T T T F T T T T

F T F F T T T F F T T T F

F F T F T F T T F F F T T

F F F F F F F F F F F F F
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Some useful facts about equivalence

Equivalence is clearly an equivalence relation on the class of
propositions. In other words:

Reflexive. For every proposition φ, φ eq φ.

Symmetric. If φ and ψ are propositions and φ eq ψ, then ψ eq φ.

Transitive. If φ, ψ and χ are propositions and φ eq ψ and ψ eq χ,
then φ eq χ.

All three properties are immediate from the definition of eq.
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Lemma ((2.9) in Chiswell)
Let φ, ψ be propositions whose propositional symbols come from
a set S. The following are equivalent:

(i) {φ} |= ψ and {ψ} |= φ.

(ii) |= (φ↔ ψ).

(iii) φ eq ψ.

(iv) a�(φ) = a�(ψ) for every S-assignment a.

Proof (i) says that every model of φ is a model of ψ, and vice
versa;
in other words, the truth valuations that are models of φ are
exactly those that are models of ψ. This is (iii).
It is also equivalent to (ii) by the truth table for ↔.
Finally (iv) is equivalent to (iii) by the Valuation Theorem. �
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Substitution theorems

These are a way of getting new tautologies, equivalences etc.
out of old ones.

Let q be a propositional symbol and φ, ψ two propositions.
We write φ[ψ/q] for the proposition got from φ by replacing each
occurrence of q by ψ.

Example:

(p3 ∧ (¬p2))[(p1 → p4)/p2]

is

(p3 ∧ (¬(p1 → p4))).
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There are two Substitution Theorems ((2.14) in Chiswell notes)).
They say:

Let q be a propositional symbol, φ, ψ1, ψ2 propositions and
Γ a set of propositions.

(1) If ψ1 eq ψ2 then φ[ψ1/q] eq φ[ψ2/q].

(2) If Γ |= ψ2, then {ψ[φ/q] : ψ ∈ Γ} |= ψ2[φ/q].

Part (1) is otherwise known as Compositionality.

Part (2) is otherwise known as the Replacement Theorem.
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Example of Compositionality:

(p1 ∧ p2) eq ¬(¬p1 ∨ ¬p2)

so

(p1 ∧ p2) → p3 eq ¬(¬p1 ∨ ¬p2) → p3.

Example of Replacement Theorem:

p1 ∧ ¬p1 is a contradiction (i.e. {p1 ∧ ¬p1} |= ⊥)

so for every proposition φ

φ ∧ ¬φ is a contradiction.
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We can prove the Substitution Theorem by the following
observations.

Compositionality says that at any truth valuation, the truth
value of a proposition won’t change if we replace the parsing
tree from some node n downwards, as long as the truth value at
n is not changed.
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The Replacement Theorem says: suppose that for every truth
valuation v,

v a model of Γ ⇒ v(ψ2) = T,

then the same is true for every truth valuation w defined by

w(pi) =




v(φ) if pi is q,

v(pi) otherwise .

But this must be true. If something holds for all truth valuations,
then it holds for all truth valuations of a certain form.
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Warning from experience

These proofs of the parts of the Substitution Theorem are correct.
But for more complicated languages one must be more careful.
Two famous and well-respected textbooks

Hilbert and Ackermann, Foundations of Mathematical
Logic, 1928;
Lloyd, Foundations of Logic Programming, 1984.

contained false theorems about substitution in their first editions.
So for more complicated languages one should be prepared to
define φ[ψ/q] carefully by induction on the length of φ, and then
prove theorems about substitution by induction on the length of
formulas.
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Disjunctive and conjunctive normal forms
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Let S be a set of propositional symbols and φ a proposition
whose propositional symbols come from S.

Consider the truth table for φ.
The rows on the left list all the S-assignments,
and for each row the corresponding truth value of φ is given on
the right.

So the table describes a function fφ from the set of
S-assignments to the set of truth values, and

fφ(a) = a�(φ) for each S-assignment a.

We can write fφ as fSφ when we need to show what S is.

34

Post’s Theorem ((2.12) in Chiswell)
Let S be a set of m propositional symbols q1, . . . , qm (m > 0),
and let g be a function from the set of S-assignments to the set
{T,F}.
Then there is a proposition ψ using at most the propositional
symbols in S, such that g = fψ.

Proof We split into three cases.

Case One: g(a) = F for all S-assignments a.
Then we take ψ to be q1 ∧ ¬q1, which is always false.

35

Case Two: There is exactly one S-assignment a such that
g(a) = T.

Then take ψ to be q′1 ∧ . . . ∧ q′m where

q′i =




qi if a(qi) = T,

¬qi if a(qi) = F.

We write ψa for this formula ψ.
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Then for every S-assignment c,

fψa(c) = T ⇔ c�(ψa) = T

⇔ c�(q′i) = T for all i (1 � i � m)

⇔ c(qi) = a(qi) for all i (1 � i � m)

⇔ c = a.

So fψa = g.
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Case Three: g(a) = T exactly when a is one of a1, . . . , ak with
k > 1.

In this case let ψ be ψa1 ∨ . . . ∨ ψak
.

Then for every S-assignment c,

fψ(c) = T ⇔ c�(ψ) = T

⇔ c�(ψaj ) = T for some j (1 � j � k)

⇔ c = aj for some j (1 � j � k).

So again fψ = g. �
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Example
We find a formula to complete the truth table

p1 p2 p3 ?

T T T F

T T F T

T F T T

T F F F

F T T T

F T F F

F F T F

F F F F
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There are three rows with value T:

p1 p2 p3 ?

T T T F

T T F T ⇐ a1

T F T T ⇐ a2

T F F F

F T T T ⇐ a3

F T F F

F F T F

F F F F
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The proposition ψa1 is p1 ∧ p2 ∧ ¬p3.
The proposition ψa2 is p1 ∧ ¬p2 ∧ p3.
The proposition ψa3 is ¬p1 ∧ p2 ∧ p3.

So the required proposition is

(p1 ∧ p2 ∧ ¬p3) ∨ (p1 ∧ ¬p2 ∧ p3) ∨ (¬p1 ∧ p2 ∧ p3).
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The formula

(¬φ)

is called the negation of the formula φ.

A literal is a formula which is either atomic
or the negation of an atomic formula
(but not ⊥ or ¬⊥).
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The formula

φ1 ∧ . . . ∧ φn
is called a conjunction and the formulas φi are called its conjuncts.

The formula

φ1 ∨ . . . ∨ φn
is called a disjunction and the formulas φi are called its disjuncts.
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A basic conjunction is a conjunction of one or more literals,
and a basic disjunction is a disjunction of one or more literals.
A single literal counts as a basic conjunction and a basic
disjunction.

A formula is in disjunctive normal form (DNF) if it is a disjunction
of one or more basic conjunctions.
A formula is in conjunctive normal form (CNF) if it is a
conjunction of basic disjunctions.
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Examples

(1)

p1 ∧ ¬p1

is a basic conjunction, so it is in DNF.
But also p1 and ¬p1 are basic disjunctions,
so the proposition is in CNF too.

(2)

(p1 ∧ ¬p2) ∨ (¬p1 ∧ p2 ∧ p3)

is in DNF.
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(3) Negating the proposition in (2), applying the De Morgan
laws and removing double negations gives

¬((p1 ∧ ¬p2) ∨ (¬p1 ∧ p2 ∧ p3))

eq ¬(p1 ∧ ¬p2) ∧ ¬(¬p1 ∧ p2 ∧ p3)

eq (¬p1 ∨ ¬¬p2) ∧ (¬¬p1 ∨ ¬p2 ∨ ¬p3)

eq (¬p1 ∨ p2) ∧ (p1 ∨ ¬p2 ∨ ¬p3)

which is in CNF.
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Theorem ((2.13) in Chiswell)
Every proposition φ in PROP is equivalent
to a proposition φDNF in disjunctive normal form,
and to a proposition φCNF in conjunctive normal form.
If S is a nonempty set of propositional symbols,
and every propositional symbol in φ is in S,
then φDNF and φCNF can be chosen so that they use only
propositional symbols from S.
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Proof The proof of Post’s Theorem constructs a proposition ψ
using only propositional symbols from S, such that fψ = fφ.

By inspection, the proposition ψ is in disjunctive normal form.

Since fφ = fψ, we have for every S-assignment a

a�(φ) = fφ(a) = fψ(a) = a�(ψ),

so φ eq ψ. Hence we can take φDNF to be ψ.

48



To find φCNF , first use the argument above to find (¬φ)DNF , call
it θ.
Then ¬θ uses only propositional symbols in S, and is equivalent
to φ.

Then use the method of Example (3) above,
pushing the negation sign ¬ inwards by the De Morgan rules
and then cancelling double negations,
to get an equivalent proposition in CNF. �
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Satisfiability of propositions in DNF and CNF

First consider a basic conjunction

φ1 ∧ . . . ∧ φm.

This proposition is satisfiable if and only if there is a valuation v
such that

v(φ1) = . . . = v(φm) = T.

Since the φi are literals, we can find such a v unless there are two
literals among φ1, . . . , φn which are respectively p and ¬p for the
same propositional symbol p.
We can easily check this condition by inspecting the proposition.
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So checking the satisfiability of propositions in DNF, and finding
a model if there is one, are trivial.

But a lot of significant mathematical problems can be written as
the problem of finding a model for a proposition in CNF.

The general problem of determining whether a proposition in
CNF is satisfiable is known as SAT.
Many people think that the question of finding a fast algorithm
for solving SAT, or proving that there isn’t one, is one of the
major unsolved problems of 21st century mathematics.
(It is the “P = NP” problem.)
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Example A proper m-colouring of a map is a function assigning
one of m colours to each country in the map, so that no two
countries with a common border have the same colour as each
other.
A map is m-colourable if it has a proper m-colouring.

Suppose a map has countries c1, . . . , cn.
Write pij for ‘Country ci has the j-th colour’.
Then finding a proper m-colouring of the map is equivalent to
finding a model of this proposition in CND:

(p11 ∨ p12 ∨ . . . ∨ pim) ∧ . . . ∧ (pn1 ∨ . . . ∨ pnm)

∧ (¬pik ∨ ¬pjk) ∧ . . .
(for all k and all countries ci, cj with a common border)
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