
Introduction to Telecommunications

and Computer Engineering

Unit 2: Number Systems and Logic

Syedur Rahman
Lecturer, CSE Department

North South University
syedur.rahman@wolfson.oxon.org

Acknowledgements

These notes contain material from the following sources:

[1] Number and Computer Systems, by R. Palit, CSE
Department, North South University, 2005.

[2] Binary Numeral System, Binary Operations, etc.,
Wikipedia, http://www.wikipedia.org, 2007.

[3] Basic Digital Logic, by P. Godin, Western Canadian
Robotics Society, 2004.

[4] Discrete Mathematics and Its Applications by K. Rosen,
5th Edition, Tata McGraw-Hill Ed., 2002.

Binary Numbers

The binary numeral system, or base-2 number system, is

a numeral system that represents numeric values using

two symbols, usually 0 and 1. More specifically, the usual

base-2 system is a positional notation with a radix of 2.

Owing to its straightforward implementation in electronic

circuitry, the binary system is used internally by virtually

all modern computers.

© 2007 Syedur Rahman

Binary to Decimal Comparison

101010

91001

81000

7111

6110

5101

4100

311

210

11

00

DecimalBinary

3485

100

x1

101

x10

102

x100

103

x1000

1010

20

x1

21

x2

22

x4

23

x8

© 2007 Syedur Rahman

Most

Significant

Bit (MSB)

Least

Significant

Bit (LSB)

Bit 3 Bit 2 Bit 1 Bit 0

From [2]

Binary to Decimal Comparison

Addition Comparison
Decimal Addition of Digits

Examples

�5 + 3 = 8

�7 + 9 = 16 (carry 1)

� and many more…

Binary Addition of Digits (all
possible)

�0 + 0 = 0

�0 + 1 = 1

�1 + 0 = 1

�1 + 1 = 10 (0 carry:1)

�1+1+1 = 11 (1 carry:1)

© 2007 Syedur Rahman

Decimal to Binary Conversion

5310 = ?2

First divide 53 repeatedly by 2

53 / 2 = 26 Rem 1

26 / 2 = 13 Rem 0

13 / 2 = 6 Rem 1

6 / 2 = 3 Rem 0

3 / 2 = 1 Rem 1

1 / 2 = 0 Rem 1

Write the remainders backward

5310 = 1101012

Octal Numeral System

The octal numeral system, or oct for short, is the base-8
number system, and uses the digits 0 to 7.

Octal numerals can be made from binary numerals by
grouping consecutive digits into groups of three (starting
from the right). For example, the binary representation for
decimal 74 is 1001010, which groups into 001 001 010 —
so the octal representation is 112.

Note: To convert a decimal number to octal or
hexadecimal, divide the number repeatedly by 8 or 16
respectively and the read the remainders backwards.

© 2007 Syedur Rahman

Hexadecimal Numeral System

Hexadecimal, base-16, or simply hex, is a numeral

system with a radix, or base, of 16, usually written

using the symbols 0–9 and A–F (A=10, B=11, C=12,

D=13, E=14, F=15).

Its primary purpose is to represent the binary code in a

format easier for humans to read, and acts as a form of

shorthand, in which one hexadecimal digit stands in

place of four binary bits.

For example, the decimal numeral 79, whose binary

representation is 01001111, is 4F in hexadecimal (4 =

0100, F = 1111).
© 2007 Syedur Rahman

Binary, Octal and Hex Conversion

Since 8 = 23 and 16 = 24, it is very simple to convert between octal and

binary or between hexadecimal and binary numbers, without having to

convert the number into decimal first.

For converting a binary number into octal, the number can be divided

into groups of three bits (starting from the right) and each group can be

written as an octal digit. The reverse can be done to convert the number

back to binary. Note that each octal digit must be converted into three

bits (e.g. 78 gives 1112, 28 gives 0102 and not 102)

For converting a binary number into hexadecimal, the number can be

divided into groups of four bits (starting from the right) and each group

can be written as an hexadecimal digit. The reverse can be done to

convert the number back to binary, i.e. each hex digit gives four bits.

What is the easiest way to convert between octal and hexadecimal?

© 2007 Syedur Rahman

Digits Required for Numbers

If M is a number containing n digits

with radix r, we can write: Therefore, the minimum

number of digits nmin, required

to represent M in radix r is:

For example, to represent 15502 in hexadecimal (radix 16) we need a

minimum of (log 15503)/(log 16) = 4.19/1.20 = 3.48 i.e. 4 digits

From [1]

© 2007 Syedur Rahman

Negative Binary Numbers

�Sign and Magnitude

�Bias/Excess-N

�One’s Complement

�Two’s Complement

© 2007 Syedur Rahman

Sign and Magnitude

−12711111111

......

−010000000

12701111111

......

100000001

000000000

S&M Intrp.Binary valueThe sign and magnitude approach is to

represent a number's sign by allocating

one sign bit to represent the sign: set

that bit (often the most significant bit)

to 0 for a positive number, and set to 1

for a negative number. The remaining

bits in the number indicate the

magnitude (or absolute value).

Note that this number system has two

representation of 0s.

It is not possible to simply “add” two

s&m numbers to get their sum

© 2007 Syedur Rahman

Bias/Excess-N

+12811111111

......

+110000000

001111111

......

-12600000001

-12700000000

Excess

-127 intr
Binary valueExcess-N, also called biased

representation, uses a pre-specified

number N as a biasing value. A value is

represented by the unsigned number

which is N greater than the intended

value. Thus 0 is represented by N, and −N

is represented by the all-zeros bit pattern.

The range of signed numbers using

Excess-127 in a conventional eight-bit

byte is −12710 to +12810.

© 2007 Syedur Rahman

Complements

Given a number a in radix r having n digits, the (r - 1)'s

complement of a is defined as (rn - 1) – a.

The r's complement of a is defined as rn – a.

Looking closely at the definition of (r - 1)'s complement

we see that to obtain the r's complement we need only add

1 to the (r - 1)'s complement

© 2007 Syedur Rahman

One’s Complement (1C)

−12710000000

......

−011111111

12701111111

......

100000001

000000000

1’C Intr.Binary value

The one’s complement form of a

negative binary number is the bitwise

NOT applied to it — the complement of

its positive counterpart. Ones'

complement has two representations of

0: 00000000 (+0) and 11111111 (−0).

The range of signed numbers with 8-

bits in 1C is from −12710 to +12710, or

from −2k-1 to (2k-1-1) with k bits

To add two numbers represented in this system,

one does a conventional binary addition, but it is

then necessary to add any resulting carry back

into the resulting sum. To see why this is

necessary, consider the following example

showing the case of the addition of −1

(11111110) to +2 (00000010).
© 2007 Syedur Rahman

Two’s Complement (2C)

The two‘s complement form of a negative

binary number is the bitwise NOT applied to

it — the complement of its positive

counterpart, and then adding 1 to it. In 2C

there is only representation of 0. To make a

2C negative number positive, one may

bitwise NOT the bits again and add 1 to it.

Addition of a pair of two's-complement integers is the

same as addition of a pair of unsigned numbers

(except for detection of overflow, if that is done).

The range of signed numbers using two‘s

complement in a conventional eight-bit byte is

−12810 to +12710, or -2k-1 to (2k-1-1) using k bits. −111111111

−211111110

......

−12610000010

−12710000001

−12810000000

12701111111

12601111110

125 01111101

... ...

100000001

000000000

2’C

Interpr

Binary

Number

From [2]

Two’s Complement

One may consider a k-bit 2C representation as having a negative weight

for the most significant bit i.e. bit k-1. So in a 8-bit 2C system bit-7 has

weight -128 (-27) instead of 128 (27). All –ve numbers have this bit as 1.

00110000

11011000

10001111

x
1

x
2

x
4

x
8

x
16

x
32

x
64

x
-128 Computing -1510+2710

= -128+64+32+16+1 = -1510

= 16+8+2+1 = 2710

= 8 + 4 = 12101

00110001

11011000

10001110

x
1

x
2

x
4

x
8

x
16

x
32

x
64

x
-128 Computing 11310+2710

= 64+32+16+1 = 11310

= 16+8+2+1 = 2710

= -11610!!! (overflow)
© 2007 Syedur Rahman

Two’s Complement

One may consider a k-bit 2C representation as having a negative weight

for the most significant bit i.e. bit k-1. So in a 8-bit 2C system bit-7 has

weight -128 (-27) instead of 128 (27). All –ve numbers have this bit as 1.

00110000

11011000

10001111

x
1

x
2

x
4

x
8

x
16

x
32

x
64

x
-128 Computing -1510+2710

= -128+64+32+16+1 = -1510

= 16+8+2+1 = 2710

= 8 + 4 = 12101

00110001

11011000

10001110

x
1

x
2

x
4

x
8

x
16

x
32

x
64

x
-128 Computing 11310+2710

= 64+32+16+1 = 11310

= 16+8+2+1 = 2710

= -11610!!! (overflow)
© 2007 Syedur Rahman

Two’s Complement

One may consider a k-bit 2C representation as having a negative weight

for the most significant bit i.e. bit k-1. So in a 8-bit 2C system bit-7 has

weight -128 (-27) instead of 128 (27). All –ve numbers have this bit as 1.

00110000

11011000

10001111

x
1

x
2

x
4

x
8

x
16

x
32

x
64

x
-128 Computing -1510+2710

= -128+64+32+16+1 = -1510

= 16+8+2+1 = 2710

= 8 + 4 = 12101

00110001

11011000

10001110

x
1

x
2

x
4

x
8

x
16

x
32

x
64

x
-128 Computing 11310+2710

= 64+32+16+1 = 11310

= 16+8+2+1 = 2710

= -11610!!! (overflow)
© 2007 Syedur Rahman

Two’s Complement

One may consider a k-bit 2C representation as having a negative weight

for the most significant bit i.e. bit k-1. So in a 8-bit 2C system bit-7 has

weight -128 (-27) instead of 128 (27). All –ve numbers have this bit as 1.

00110000

11011000

10001111

x
1

x
2

x
4

x
8

x
16

x
32

x
64

x
-128 Computing -1510+2710

= -128+64+32+16+1 = -1510

= 16+8+2+1 = 2710

= 8 + 4 = 12101

00110001

11011000

10001110

x
1

x
2

x
4

x
8

x
16

x
32

x
64

x
-128 Computing 11310+2710

= 64+32+16+1 = 11310

= 16+8+2+1 = 2710

= -11610!!! (overflow)
© 2007 Syedur Rahman

Comparison using a 4-bit system

01110000000000000000(+)0

10000001000100010001+1

10010010001000100010+2

10100011001100110011+3

10110100010001000100+4

11000101010101010101+5

11010110011001100110+6

11100111011101110111+7

1111N/AN/AN/A1000+8

Excs-7

Repres

Two’s C

Repres.

Ones‘C

Repres.

S&M

Repres.

Unsig-

ned

Deci-

mal

N/A1000N/AN/AN/A−8

0000100110001111N/A−7

0001101010011110N/A−6

0010101110101101N/A−5

0011110010111100N/A−4

0100110111001011N/A−3

0101111011011010N/A−2

0110111111101001N/A−1

N/AN/A11111000N/A(−)0

Excs-7

Repres

Two’s C

Repres.

One‘s C

Repres.

S&M

Repres.

Unsig-

ned

Deci-

mal

© 2007 Syedur Rahman

From [2]

Fixed and Floating Point Binary
Binary mixed numbers and fractions can be represented using a

fixed-point or floating point representation.

A fixed-point binary representation is a real data type for a

number that has a fixed number of bits before and after the radix

point. In terms of binary numbers, each magnitude bit represents a power

of two, while each fractional bit represents an inverse power of two.

0

24

x16

1

23

X8

1

22

x4

1

21

x2

1010

2-3

x⅛

2-2

x¼

2-1

x½

20

x1

The binary system on the left has 5 bits
before the radix point and 3 bits after it

= 01110.101
= 8 + 4 + 2 + ½ + ⅛ = 14.625

Floating-point binary refers to the fact that the radix point can be

placed anywhere relative to the digits within the string. This position

is indicated separately in the internal representation, and this representation

can thus be thought of as a computer realization of scientific notation.
© 2007 Syedur Rahman

IEEE Standard 754 Floating Point Numbers

102352 [51-00]11 [62-52]1 [63]Double Precision

12723 [22-00]8 [30-23]1 [31]Single Precision

BiasFractionExponentSign

IEEE Standard 754 floating point is the most common representation today for

real numbers on computers, including Intel-based PC's, Macintoshes, and most

Unix platforms.

© 2007 Syedur Rahman

From [2]

Range of IEEE 754 Numbers

± ~10-323.3 to ~10308.3± 2-1022 to (2-2-52)×21023± 2-1074 to (1-2-52)×2-1022
Double

Precision

± ~10-44.85 to ~1038.53± 2-126 to (2-2-23)×2127± 2-149 to (1-2-23)×2-126
Single

Precision

Approximate

Decimal

Normalized

Range

Denormalized

Range

© 2007 Syedur Rahman

IEEE754 Single Precision

n = (-1)s × 2e × m

Where

s = the sign bit

e = exp − 127 (in other words the exponent is stored with 127

added to it, also called "biased with 127" or excess-127)

m = 1.fraction in binary (that is, the significand/mantissa is

the binary number 1 followed by the radix point followed by

the binary bits of the fraction). Therefore, 1 ≤ m < 2.

© 2007 Syedur Rahman

From [2]

Single Precision Float Examples

= ?

= ?

© 2007 Syedur Rahman

From [2]

IEEE754 Double Precision

n = (-1)s × 2e × m

Where

s = the sign bit

e = exp − 1023 (in other words the exponent is stored with

1023 added to it, also called excess-1023).

m = 1.fraction in binary (that is, the significand/mantissa is

the binary number 1 followed by the radix point followed by

the binary bits of the fraction). Therefore, 1 ≤ m < 2.

© 2007 Syedur Rahman

From [2]

IEEE 754 Numbers - Details

non zero2k − 1 (all 1s)NaNs

02k − 1 (all 1s)Infinities

any1 to 2k − 2Normalized numbers

non zero0Denormalized numbers

00Zeroes

FractionExponentType

© 2007 Syedur Rahman

k is the number of bits reserved for the exponent, i.e. 8 and 11 bits for single

and double precision respectively

Denormalized Numbers in IEEE 754

If the exponent is all 0s, but the fraction is non-zero
(else it would be interpreted as zero), then the value is a
denormalized number, which does not have an assumed
leading 1 before the binary point.

Thus for single precision, this represents a number
(-1)s × 0.f × 2-126

where s is the sign bit and f is the fraction.

For double precision, denormalized numbers represent
(-1)s × 0.f × 2-1022

From this you can interpret zero as a special type of
denormalized number.

© 2007 Syedur Rahman

NaNs (Not a Number) in IEEE 754

The value NaN (Not a Number) is used to represent a value that does

not represent a real number. NaN's are represented by a bit pattern with

an exponent of all 1s and a non-zero fraction. There are two categories

of NaN: QNaN (Quiet NaN) and SNaN (Signalling NaN).

A QNaN is a NaN with the most significant fraction bit set. QNaN's

propagate freely through most arithmetic operations. These values pop

out of an operation when the result is not mathematically defined.

An SNaN is a NaN with the most significant fraction bit clear. It is

used to signal an exception when used in operations. SNaN's can be

handy to assign to uninitialized variables to trap premature usage.

Semantically, QNaN's denote indeterminate operations, while SNaN's

denote invalid operations.

© 2007 Syedur Rahman

IEEE 754 – Interpretation Summary

n = (-1)s × 2exp-bias × 1.frac if no. is normalized (exp≠0)

n = (-1)s × 2-bias+1 × 0.frac if no. is denormalized (exp=0)

bias=127 for single precision whereas bias=1023 for double precision

Example for Single Precision:

012345678910111213141516171819202122232425262728293031

Sign Exponent Fraction
s exp frac

Bit

© 2007 Syedur Rahman

Special Operations
Operations on special numbers are well-defined by IEEE. In the

simplest case, any operation with a NaN yields a NaN result. Other

operations are as follows:

NaN±Infinity × 0

NaN±Infinity ÷ ±Infinity

NaNInfinity - Infinity

NaN±0 ÷ ±0

Infinity Infinity + Infinity

±Infinity ±nonzero ÷ 0

±Infinity ±Infinity × ±Infinity

0 n ÷ ±Infinity

Result Operation

© 2007 Syedur Rahman

From [1]

BCD and ASCII
The Binary Coded Decimal (BCD)

system allows numbers to be stored in

decimal form with each decimal digit

being represented by 4 bits. So, 46 is

represented by 01000110. It is however

not of much use in binary arithmetic.

American Standard Code for

Information Interchange (ASCII) is a

seven-bit code, meaning it uses patterns of

seven binary digits (a range of 0 to 127

decimal) to represent each character

commonly used for text. The first 32 (0-31)

are non-printable control characters. E.g. 13 is

carriage return (enter) and 8 is backspace. ASCII Printable

Characters 32-126

Gray Code and Error Detecting Code

Gray Code: The reflected binary code, also known as

Gray code, is a binary numeral system where two

successive values differ in only one digit. The reflected

binary code was originally designed to prevent spurious

output from electromechanical switches.

Error Detecting Code: To detect errors in data

communication and processing, an extra bit is sometimes

added to indicate its parity (e.g. an 8th bit is added to

ASCII). An even or odd parity bit is an extra bit included

with a message to make the total number of 1's either

even or odd respectively

100

101

111

110

01010

01111

00101

00000

3-bit2-bit

With even parity With odd parity

ASCII A = 1000001 01000001 11000001

ASCII T = 1010100 11010100 01010100

Gray Code

© 2007 Syedur Rahman

Basics of Digital Logic

A statement is a collection of symbols that has a logic
value – either off/low (0) or on/high (1).

Variables in boolean logic are symbols that have a certain
meaning and take a binary value depending on the current
situation.

Connectives or operators are symbols that are used to
form larger statements out of smaller ones.

© 2007 Syedur Rahman

Logical Operations

A disjunction is a compound statement in which two
substatements are connected by + + + + (OR), e.g. p+q

A conjunction is a compound statement in which two
substatements are connected by (AND) e.g. p.q

The negation (NOT) of statement p is p’ or p, meaning
the complement of p

OR, AND and NOT are basic logical operations. Other
logical operations include NAND, NOR, XOR etc.

© 2007 Syedur Rahman

Truth Tables

A truth table is a mathematical table used in logic to

compute the functional values of logical expressions on

any of their functional arguments, that is, with respect to

the various possible combinations of values that their

logical variables may take.

Remember that with n logical variables, the truth table

will always have 2n rows.

© 2007 Syedur Rahman

Truth Tables: Examples

111

001

010

000

p....qqp

111

101

110

000

p++++qqp

01

10

pp

© 2007 Syedur Rahman

From [4]

Bit-wise Logical Operations

The bit-wise AND/OR operation between two n-bit numbers X

and Y can be performed by computing the AND/OR of each bit

of X with the corresponding bit of Y. Similarly the bit-wise

NOT of a n-bit number X can be performed by NOT-ing each of

its bits.

Example bit-wise AND, OR and NOT operations with 8 bits:

00010111 01011000

01111010 00010111 NOT 11000010

00010010 01011111 00111101

AND OR

© 2007 Syedur Rahman

Logic Gates

A logic gate performs a

logical operation on one or

more logic inputs and

produces a single logic

output. The logic normally

performed is Boolean

logic and is most

commonly found in digital

circuits.

From [2]

© 2007 Syedur Rahman

An example of a logical circuit

A = B.C + C

10111

11001

00010

11000

AYXCB

Circuit Diagram
Truth Table

© 2007 Syedur Rahman

From [3]

© 2007 Syedur Rahman

Transistors

Transistors are versatile three

lead semiconductor devices

whose applications include

electronic switching and

modulation (amplification).

They are the building blocks of

microcomputers.

Basically a transistors works as a

closed switch when a certain

voltage is applied to the base

and as an open switch otherwise.

From [2]

© 2007 Syedur Rahman

Shift Operations

Using shift operations the bits in a word/byte are moved, or

shifted, to the left or right.

In a logical shift, the bits that are shifted out are discarded, and

zeros are shifted in (on either end).

In an arithmetic shift, the bits that are shifted out of either end

are discarded. In a left arithmetic shift, zeros are shifted in on

the right; in a right arithmetic shift, the sign bit is shifted in on

the left, thus preserving the sign of the operand.

Other shift operations include rotate through carry and rotate

no carry (with either does or does not respectively take into

account the special carry bit reserved for arithmetic

computations)

© 2007 Syedur Rahman

Shift and Multiplication/Division

Arithmetic shift operations can be used for
performing arithmetic operations such as
multiplication by 2 using left shift and division
by 2 using right shift.

Multiplications with other numbers can also be
performed using shifts, addition and/or
subtraction. Examples:
One can multiply n with 5, by left shifting n
twice (i.e. multiplying by 4) and by adding n to
the result.
One can multiply n with 7, by left shifting n
thrice (i.e. multiplying by 8) and subtracting n
from the result.

From [2]

© 2007 Syedur Rahman

