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Abstract. A continuous consensus (CC) protocol maintains for each process i
at each time k an up-to-date core M;[k] of information about the past, so that the
cores at all processes are guaranteed to be identical. This is a generalization of
simultaneous consensus that provides processes with the ability to perform simul-
taneously coordinated actions, and saves the need to compute multiple instances
of simultaneous consensus at any given time. For an indefinite ongoing service
of this type, it is somewhat unreasonable to assume a bound on the number of
processes that ever fail. Moreover, over time, we can expect failed processes to
be corrected. A failure assumption called (m,t) interval-bounded failures, closely
related to the window of vulnerability model of Castro and Liskov, is considered
for this type of service. The assumption is that in any given interval of m rounds,
at most ¢ processes can display faulty behavior.

This paper presents an efficient CC protocol for the (m,7) bound in the crash
and sending omissions failure models. A matching lower bound proot shows that
the protocol is optimal in all runs (and not just in the worst case): For each and
every behavior of the adversary, and at each time instant m, the core that our pro-
tocol maintains at time m is a superset of the core maintained by any other correct
CC protocol under the same adversary. The lower bound is a significant general-
ization of previous proofs for common knowledge, and it applies to continuous
consensus in a wide class of benign failure models, including the general omis-
sions model, for which no similar proof existed.
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1 Introduction

Fault-tolerant systems often require a means by which independent processes or pro-
cessors can arrive at an exact mutual agreement of some kind. As a result, reaching
consensus is one of the most fundamental problems in fault-tolerant distributed com-
puting, dating back to the seminal work of Pease, Shostak, and Lamport (17]. In the
first consensus algorithms, decisions were reached in the same round of communica-
tion by all correct processes. It was soon discovered, however, that allowing decisions
to be made in different rounds (“eventual agreement”) at different sites gives rise to
simpler protocols in which the processes can often decide much faster than they would
if we insist that decisions be simultaneous [B]. There are cases in which eventual agree-
ment often suffices: In recording the outcomes of transactions, for example. In other
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cases, however, a simultaneous decision or action is often required or beneficial: E.g.,
when one distributed algorithm ends and another one begins, and the two may interfere
with each other if executed concurrently. Similarly, many synchronous algorithms as-
sume that the starting round is the same at all sites. Finally, there are cases in which
the responses in a given round to external requests at different sites for, say resource
allocation, must be consistent. A familiar application that assists in many of these is the
Firing Squad problem , EI].

Motivated by [B, ], the problem of reaching simultaneous consensus was shown in
17,113 to require the correct processes to attain common knowledge about the existence
of particular initial values. By computing common knowledge efficiently in the crash
failure model, they designed protocols for simultaneous consensus that are optimal in
all runs, and not just in the worst case: In every execution, they decided as fast as any
correct protocol could, given the same behavior of the adversaryEl Finally, they also ob-
served that computing facts that are common knowledge, in essentially the same manner,
can solve other simultaneous coordination problems such as the firing squad problem.
While [Iﬂ] considered crash failures, [IE] extended the analysis of common knowledge to
omission failure models. They designed an efficient protocol for computing all facts that
are common knowledge at a given point, and used this to derive optimal protocols for a
wide class of simultaneous choice problems. More recently, this work was further gen-
eralized in [|rl|], where a general service called Continuous Consensus (CC) that serves
to support simultaneous coordination was defined Tt is described as follows.

Suppose that we are interested in maintaining a simultaneously consistent view re-
garding a set of events £ in the system. These are application-dependent, but will typi-
cally record inputs that processes receive at various times, values that certain variables
have at a given time, and faulty behavior in the form of failed or inconsistent message
deliveries. A (uniform)] continuous consensus protocol maintains at all times £k > 0 a
core M;lk] of events of E at every site i. In every run of this protocol the following
properties are required to hold, for all processes i and ;.

Accuracy: All events in M;[k] occurred in the run.

Consistency: M;[k| = M;[k] at all times k.

Completeness: If ¢ occurs at a process j at a point at which j is nonfaulty, then e €
M;[k] must hold at some time k.

The continuous consensus problem generalizes many problems having to do with si-
multaneous coordination. Using the core of a CC primitive, processes can indepen-
dently choose compatible actions in the same round. Thus, the firing squad problem [EI]

! We think of the adversary as determining the pattern of initial votes and the pattern in which
failures occur, in each given execution of the protocol. The performance of a protocol P can
be compared to that of P’ by looking at respective runs in which the adversary behaves in the
same way.

2 A different problem, by the same name, was independently defined by Dolev and Rajsbaum.
Sometimes called Long-lived consensus, it concerns maintaining consensus on a single bit in
a self-stabilizing fashion [B].

31n ] we defined both non-uniform and a uniform variants of continuous consensus. In the
(m,t) model processes can fail and recover repeatedly, so we focus on the uniform variant, in
which all processes maintain the same core at all times.
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can immediately be implemented, but so can, say, consistent resource allocation, mu-
tual exclusion, etc. In a world in which distributed systems increasingly interact with
an outside world, a CC protocol facilitates the system’s ability to present a consistent
view to the world.

The consensus problem has rightfully attracted considerable attention in the last
thirty years, since it is a basic primitive without which many other tasks are unattain-
able. Continuous consensus offers a strict generalization of (simultaneous) consensus:
While consensus is concerned with agreeing on a single bit, continuous consensus al-
lows decisions to be taken based on a broader picture involving a number of events of
interest. In particular, it provides the processes with Byzantine Agreement regarding
the values of all relevant external inputs that do or do not arrive at the various processes
(where relevance is determined by ). It thus eliminates the need for initiating a sepa-
rate instance of a consensus protocols for each of the facts of interest, and provides the
same benefits at a lower cost.

Popular failure assumptions bound the overall number of failures that may occur
during the execution of a protocol 17. Clearly, if the adversary can cause all of the
processes to fail (by crashing, say) then the best protocols cannot be expected to achieve
much. Typically, a process is considered faulty in a given run if it ever displays incorrect
behavior during the course of the run. Such assumptions are reasonable for applications
that are short-lived. For applications such as continuous consensus, however, which is
an ongoing service that should operate indefinitely, expecting (or assuming) that certain
processes remain correct throughout the lifetime of the system may be overly optimistic.
Conversely, it would also be natural to expect various failed processes to be repaired
over time, and thus resume correct participation in the protocol. In such a setting, it
is more reasonable to consider bounds on the number and/or types of failures that can
occur over limited intervals of time. Indeed, Castro and Liskov designed a protocol
for state-machine replication in an Byzantine environment that is correct provided that
no more than n/3 processes fail during an execution-dependent period that they call
a window of vulnerability [@]. We follow a similar path in this paper, and consider
continuous consensus in omissive settings under the (m,r)-interval bound assumption
(called the (m, ) model for short), which states that there is no m-round interval in which
more than ¢ processes display faulty behavior. The contributions of this paper are:

— The (m,t)-interval bounded omission failure model is introduced.

— A continuous consensus protocol mt-Cc for the (m,t) model whenever 1 < m is
presented.

— mt-Cc is shown to be optimal in all runs for this model: For any CC protocol P and
any given behavior of the adversary, the core maintained by mt-Cc at each time k
is a superset of the core maintained by P under the same conditions.

— The lower bound used in proving the optimality of mt-CcC is the first one tackling
the possibility of process recoveries in a simultaneous agreement problem. All pre-
vious lower bounds for simultaneous consensus and continuous consensus in the
presence of crash or omission failures make essential use of the fact that failures
accumulate monotonically over time [ﬁ, , , ] The new lower bound proof in
this paper overcomes this hurdle.

— The main lemmas in the lower bound apply to a large class of benign failure models,
including the general omissions model studied in [[13].
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2 Model and Preliminary Definitions

Our treatment of the continuous consensus problem will be driven by a knowledge-
based analysis. A general approach to modeling knowledge in distributed systems was
initiated in [IQ] and given a detailed foundation in [E] (most relevant to the current paper
are Chapters 4 and 6). For ease of exposition, our definitions will be tailored to the
proofs for continuous consensus in our setting.

The Communication Network. We consider a synchronous network with n > 2 possibly
unreliable processes, denoted by P = {1,2,...,n}. Each pair of processes is connected
by a two-way communication link. Processes correctly identify the sender of every
message they receive. They share a discrete global clock that starts out at time 0 and
advances by increments of one. Communication in the system proceeds in a sequence
of rounds, with round k + 1 taking place between time k and time k + 1. Each process
starts in some initial state at time 0. Then, in every following round, the process first
sends a set of messages to other processes, and then receives messages sent to it by
other processes during the same round. In addition, a process may also receive requests
for service from clients external to the system (think, for example, of deposits and
withdrawals at branches of a bank), or input from sensors with information about the
world outside of the system (e.g., smoke detectors). Finally, the process may perform
local computations based on the messages it has received. The history of an infinite
execution of such a network will be called a run.

Modeling the Environment: Inputs and Failures. A protocol is designed to satisfy a
specification when executed within a given setting, which determines the aspects of the
execution that are not controlled by the protocol. In our framework the setting can be
described in terms of a set of adversaries that control the two central aspects of any
given run: inputs and failures.

Inputs. Every process starts out in an initial local state from some set Z;, and can receive
an external input in any given round k (this input is considered as arriving at time k).
The initial local state of each process can be thought of as its external input at time 0. We
represent the external inputs in an infinite execution as follows. Define aset V=P x N
of process-time nodes (or nodes, for short). We shall use a node (i,k) € V to refer to
process i at time k. We denote by V (k) the set P x {k} C V of all nodes (i,k), and if
k < ¢ then we define V[k, (] =P x {k,k+1,....0} =V(k)U---UV(L).

An (external) input assignment is a function { associating with every node (i,0) at
time O an initial state from X; and with each node (i,k) with k > 0 an input from a set
of possible inputs, which is denoted by II. (The set I typically contains a special symbol
L, corresponding to a “null” external input.) An input model consists of a set Z of input
assignments. For the purpose of the analysis in this paper, we will focus on input models
in which the inputs at different nodes of V are not correlated. An input model = is said
to be independent if for every {,{' € Z and every set T C V, we are guaranteed that
Cr € E, where {7 is the input assignment that coincides with { on T and with £’ on
V\ T. In the classical consensus problem, for example, ¥; = {0,1} and I = {L}. The
input model consists of all possible input assignments based on these %; and on /, and
is clearly independent.
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Fig. 1. A communication graph G® and i’s subgraph G®(i, k)

Benign failures and recoveries. The second aspect of a run that is determined by the
adversary has to do with the type of failures possible, and the patterns in which they can
occur. When focusing on benign failures, as in this paper, any message that is delivered
is sent according to the protocol.

A failure pattern for benign failures is a function ¢ : V — 2F. Intuitively, a failure
pattern determines which channels are blocked (due to failure) in any given round. More
concretely, ©(i, k) is the set of processes to which messages sent by i in round k+ 1 will
not be delivered ] Equivalently, a message sent by i to j in round k4 1 will be delivered
iff j ¢ ¢(i,k). We denote by © the failure-free pattern satisfying that @ (v) = 0 for all
veV.

We identify a failure pattern ¢ with a communication gmphE denoted by G®, de-
tailing the active channels in an execution. We define the graph G® = (V,E?), where
E® ={((i,k),(j,k+1)): j¢ o(i,k)}. Notice that ¢ uniquely determines G® and vice-
versa. For a node v = (i,k) € V, we denote by G?(i,k) (or G®(v)) the subgraph of G®
generated by v and all nodes w € V such that there is a directed path from w to v in G®.
This subgraph captures the potential “causal past” of v under @: all nodes by which v
can be affected via communication, either directly or indirectly. An illustration of a
graph G®(i, k) is depicted in Figure[Il Given a set of nodes S C V, we denote by G?(S)
the subgraph of G® obtained by taking the union of the graphs G®(v), forv € S.

A (benign) failure model for synchronous systems is a set ®@ of failure patterns .
Intuitively we can view a benign failure model as one in which failures affect message
deliveries. Any message that is delivered is one that was sent according to the protocol.
The standard benign models, including 7-bounded crash failures, sending omissions,
receiving omissions, or general omissions ] are easily modeled in this fashion. The
same applies to models that bound the number of undelivered messages per round (e.g.,

3. [18]).

4 Note that a failure pattern can model process failures as well as communication failures. If
i € ¢(i,k) then i “does not receive its own message” in round k + 1. This corresponds to a
loss of i’s local memory, and captures the recovery from a process crash. It allows a distinc-
tion between recovery from a local process crash and reconnection following disconnected
operation.

5> Communication graphs were first used, informally, in the anasysis of consensus by Merritt
[@]. They were formalized in [@,B]. Our modelling is taken from the latter. Similar modelling
was more recently used in the Heard-Of model of Charron-Bost and Schipper [E].
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The (m,t) interval-bounded failure model. For the purpose of this paper, it is convenient
to consider a process i € IP as being faulty at (i,k) according to @ if ©(i,k) # 0 (i.e., if
one or more of i’s outgoing channels is blocked in round k+ 1). We say that i € P is
faulty according to ¢ in the interval V[k,k +m — 1] if i is faulty at (i,k") for some k’
satisfying k <k’ < k+m— 1. The (m,t) interval-bounded failure model is captured by
the set OM(m,¢) of all failure patterns ¢ such that, for every k > 0, no more than ¢
processes are faulty according to @ in V[k, k +m — 1]. The standard (sending) omissions
failure model is then captured by OM(eo,1) =, OM(m,1).

Environments and Protocols. We shall design protocols for continuous consensus with
respect to an environment that is specified by a pair A = ® x E, where ® = OM(m, )
and Z is an independent input model. Each element (¢,{) of the environment A we
call an adversary. A protocol for process i is a deterministic function P; from the local
state of a process to local actions and an assignment of at most one message to each
of its outgoing links. Its local state at time k -+ 1 consists of its local variables after the
local actions at time k are performed, its external input at (i,k + 1), and the messages
delivered to it in round k + 1 on its incoming channels

A joint protocol (or just protocol for short) is a tuple P = {P;}cp. For a given adver-
sary (9,8) € @ x E, a protocol P determines a unique run r = P(¢,0) : V— Lx M x P,
which assigns a local state to each node (i,k) in the unique manner consistent with P,
¢ and C: initial states and external inputs are determined by {, protocol P determines
local states and outgoing messages, and ¢ determines which of the sent messages on
incoming channels produces a delivered message.

3 Continuous Consensus and Common Knowledge

Knowledge theory, and specifically the notion of common knowledge, are central to
the study of simultaneously coordinated actions. This connection has been developed
and described in [EL , ,, , ]. In particular, ] showed that in a continuous
consensus protocol, the contents of the core at a given time k are guaranteed to be
common knowledge. In this section we will review this connection, in a manner that will
be light on details and focus on the elements needed for our analysis of CC protocols.
In particular, we will make use of a very lean logical language in which the only modal
construct is common knowledge. For a more complete exposition of knowledge theory
see [@].

We are interested in studying CC in an environment A = (®,Z) in which Z is an
independent input model. We say that Z is non-degenerate at a node (i, k) € V if there
are {,{' € E such that {(i,k) # C'(i,k). A CC application needs to collect information
only about non-degenerate nodes, since on the remaining nodes the external input is
fixed a priori. We will consider a set of primitive events E w.r.t. = each of the form
e = (o, i,k) where o € Z and = non-degenerate at (i,k). The event e = (a,i,k) is said
to occur in run r = P(@,{) exactly if {(i,k) = a.. The core will be assumed to consist of
a set of such primitive events.

6 To model local crashes, we would replace the local variables in i’s local state at time k by A if
i€o(i,k+1).
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Knowledge is analyzed within the context of a system R = R (P,A) consisting of the
set of runs r(P,¢,{) of a protocol P in A. A pair (r,k) where r is a run and k is a time
is called a point. Process i’s local state at (i,k) in r is denoted by r;(k). We say that i
cannot distinguish (r,k) from (v, k) if r;(k) = ri(k). We consider knowledge formulas
to be true or false at a given point (r,k) in the context of a system R.. In the standard
definition [8], process i knows a fact A at (r,k) if A holds at all points that i cannot
distinguish from (7, k).

For every e € ‘£, we denote by C(e) the fact that e is common knowledge, which
intuitively means that everybody knows e, everybody knows that everybody knows e,
and so on ad infinitum. We define common knowledge formally in the following way,
which can be shown to capture this intuition in a precise sense. We define a reachability
relation ~ among points of &_to be the least relation satisfying:

1. if ri(k) = ri(k) then (r,k) ~ (¥,k), and
2. if, for some r" € R, both (r,k) ~ (¢’ k) and (¥, k) ~ (¥ ,k), then (r,k) ~ (¥, k).

In other words, define the similarity graph over K to be an undirected graph whose
nodes are the points of &, and where two points are connected by an edge if there is
a process that cannot distinguish between them. Then (r,k) ~ (#,k) if both points are
in the same connected component of the similarity graph over X . Notice that ~ is an
equivalence relation, since connected components define a partition on the nodes of an
undirected graph. We denote by (R ,r,k) = C(e) the fact that e is common knowledge
to the processes at time k in r. We formally define:

(R,r,k) = C(e) ifeventeoccursin every ' € R satisfying (r,k) ~ (v, k).

We can formally prove that the events in the core of a CC protocol must be common
knowledge:

Theorem 1 ([Ij, |l_].|]). Let P be a CC protocol for A, and let R. = R (P,A). For all runs
r € R, times k > 0 and events e € ‘E, we have:

If eeMik] then (R,rk)=C(e).

4 Lower Bounds for CC in Benign Failure Models

We can show that an event at a node (i,k) cannot be in the the core of a CC protocol
at time ¢ if we prove that the event is not common knowledge by time /. It turns out
that the failure models and failure patterns play a central role in forcing events not to
be common knowledge. By working with these directly, we avoid some unnecessary
notational clutter.

Given a failure model @, we define the similarity relation ~ on ®@ x N to be the least
relation satisfying:

1. if G®(i,k) = G (i,k) holds for some process i € P, then (¢,k) ~ (¢',k), and
2. if, for some ¢" € @, both (¢, k) ~ (¢”,k) and (¢" k) =~ (¢, k), then (@, k) =~ (¢, k).
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As in the case of ~, the ~ relation is an equivalence relation, because condition (1) is
reflexive and symmetric, while condition (2) is symmetric and guarantees transitivity.

We say that process i is shut out in round k + 1 by ¢ (equivalently, (i,k) is shut out
by @), if @(i,k) 2 P\ {i}. Intuitively, this means that no process receives a message
from i in round k 4 1. We say that a node (i, k) is hidden by ¢ at time { if (9,0) =~ (y, )
for some pattern y in which i is shut out rounds k + 1,..., . If a node is hidden by the
failure pattern, then its contents cannot be common knowledge, no matter what protocol
is being used, as formalized by the following theorem:

Theorem 2. Let R = R.(P,A), where A= ® X E and E is independent, let e = (0.,i,k)
be a primitive event and let r = P(9,8) € R. If (i,k) is hidden by ¢ at { then (R, r,()
C(e).

A major tool in our impossibility results is the notion of a covered set of nodes. In-
tuitively, a covered set S at a given point satisfies three main properties. (i) it is not
common knowledge that even on node of s is faulty, as there is a reachable point in
which all nodes if S are nonfaulty. (ii) for every node in s, its contents are not common
knowledge, in the sense that there is a reachable point in which this node is silent. (iii)
Finally, the reachable points in (i) and (ii) all agree with the current point on the nodes
not in S. Formally, we proceed as follows.

Definition 1 (Covered Nodes). Let S C 'V, and denote Sy = V[0,¢]\ S. We say that
S is covered by @ at time { (w.r.t. @) if

— forevery node (i,k)=v € S there exist ¢, such that (a) (¢,0) = (¢,,£), (b) G®(S;) =
G® (Sy), and (c) iis shut out in rounds k+1,...,¢ of ¢,. Moreover,

— there exists ¢/ € @ such that (d) (¢,0) =~ (¢/,€), (e) G?(8;) = G¥(S,), and
(f) ¢ (v) =0 for all nodesv € S.

The fact that ~ is an equivalence relation immediately yields

Lemma 1. Fix ® and let S C V. If (¢,) ~ (¢/,€) and G9(S;) = G () then S is
covered by ¢ at L iff’ S is covered by ¢ at (.

One set that is guaranteed to be covered at time £ is V(£):
Lemma 2. V() is covered by @ at ¢, for every failure pattern ¢ and £ > 0.

Proof. Denote V({) by S. Choose ¢ = ¢, for each v = (j,¢) € S to satisfy clauses (a),
(b) and (c) of the definition for v € S. The clauses are immediate for ¢,. To complete
the claim we need to show that S is covered by @ at £: Define ¢’ for clauses (d), (e) and
() to be the pattern obtained from ¢ by setting ¢/(j,¢) = 0 for every j € P. |

Monotonicity. Our “lower bound” proofs take the form of proving impossibility of com-
mon knowledge under various circumstances. To make the results in this section widely
applicable, we state and prove results with respect to classes of failure models rather
than just to the (m,#) model. We shall focus on models with the property that reducing
the set of blocked edges in a failure pattern yields a legal failure pattern. Formally, we
say that y improves on @, and write y C @, if y(v) C ¢(v) for every v € V. (Notice that
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the fault-free failure pattern ©) satisfies () C o for all patterns @.) It is easy to check
that y C ¢ iff G? is a subgraph of GY. A failure model @ is monotonically closed (or
monotone, for short) if for every pattern \ that improves on a pattern in @ is itself in @.
Formally, ¢ € ® and y C ¢ implies y € ®. Clearly, if ® is monotonically closed, then
© € ®. Observe that OM(m, ) is monotonically closed.

Single Stalling. In many failure models, a crucial obstacle to consensus is caused by
executions in which a single process is shut out in every round. This will also underly
the following development, where we show essentially that for a broad class of failure
models, the adversary’s ability to fail an arbitrary process per round will keep any events
from entering the CC core. We call this single stalling. To capture this formally for
general failure models, we make the following definitions.

We say that two patterns @ and ¢ agree on a set of nodes T C V if G®(T) = G¥ (T).
Notice that this neither implies or is implied by having ¢(v) = ¢/(v) for all v € T. This
notion of agreement depends on the nodes with directed paths into nodes v € T', while
¢(v) specifies the outgoing edges from v. In a precise sense, though, the execution of a
given protocol P on failure pattern ¢ can be shown to be indistinguishable at the nodes
of T from its execution on ¢'. This is closely related to the the structure underlying the
proof of Theorem[2l

Definition 2 (Single stalling). Let ® be a monotone failure model. Fix ®, let ¢ € ©,
and let W C V. We say that G®(W) admits single stalling in [k, ] (w.r.t. @) if; for every
sequence G = pyi1,...,pe of processes (possibly with repetitions), there exists a pattern
@ € © agreeing with @ on W such that both (a) (9,0) =~ (9s,{), and (b) each process
pj in G is shut out in round j of in @, forall j =k+1,... L.

The heart of our lower bound proof comes in the following lemma. Roughly speaking,
it states that if a set of nodes S containing the block V[k+ 1, /] of nodes from time k+ 1
to ¢ are all covered, and it is consistent with the information stored in the complement
set Sy that the node (j, k) could be shut out, then (j, k) can be added to the set of covered
nodes. to the set of covered nodes. This allows to prove incrementally that the nodes
at and after the critical time ¢ = ¢(¢) that are not in the critical set are all covered.
Formally, we now show the following:

Lemma 3. Fix a monotone failure model ®@. Let k < ¢ and assume that the set S O
Vik+1,0) is covered by ¢ at L. Let T = SU{(j,k)}, and let \y be the pattern obtained
from @ by shutting out (j,k). If W € ® and GY(Ty) admits single stalling in [k+ 1,/],
then T is hidden by @ at £.

The proof of Lemma[3|appears in the Appendix. Based on Lemma[3] we obtain:

Lemmad. Let k < (. If S = V[k+ 1,£] is covered by ¢ at { and G®(Sy) admits single
stalling in [k, €], then V[k,{] is covered by ¢ at {.

A new lower-bound construction. Previous lower bounds on common knowledge in the
presence of failures, including the ones for CC protocols in [Iﬂ], are all based on the
fixed-point construction of Moses and Tuttle ] and, for uniform consensus, on its
extension by Neiger and Tuttle [16]. Their construction applies to crash and sending
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omissions, and it (as well as earlier proofs in [ﬁ]) depends in an essential way on the
fact that faultiness in these models is forever. Somewhat in the spirit of the “Heard-
of”” model of [@], our generic lower bound results in Lemmas 2H4] are oblivious of the
notion of process failures per-se. Lemmas [3] and [ are the basis of our new a fixed-
poi{% construction for general monotone failure models that subsumes the construction
in [13].

5 A Continuous Consensus Protocol for the (m,7) Model

The purpose of this section is to present mt-Cc, a CC protocol for OM(m, ) that is effi-
cient and optimal in runs. The protocol makes use of instances of the UniConCon pro-
tocol (UccC) presented in ]. This is an optimal (uniform) CC protocol for OM(eo, )
with the following properties: Beyond storing the relevant events in £—which are ap-
plication dependent—UcC uses O(logk) new bits of storage and performs O(n) com-
putation in each round k. In addition, in every round k + 1 each process i sends everyone
a message specifying the set f;[k] of processes it knows are faulty at time k, as well as
any new information about events e € ‘£ that it has obtained in the latest round. The fail-
ure information in every message requires min{O(n), O(| f;[k]|logn)} bits. Our analysis
will not need further details about UcC beyond these facts.

The intuition behind our protocol is based on the following observation. The adver-
sary’s ability to cause failures in the OM(m,7) model in a given round depends only
on the failures that the culprit caused in the m-round interval ending with this round.
In a precise sense, the (crucial) impact of the adversary’s actions on the core at time ¢
depends only on the previous cores and the failures that occur in the last m rounds.
Consequently, our strategy is to invoke a new instance of UCC in every round, and keep
it running for m rounds. Each instance takes into account only failures that occur after
it is invoked. For times ¢ < m, the core M[¢] coincides with the one computed by the
Ucc initiated at time 0. For later times ¢ > m, the core M[(] is obtained by taking the
union of M[¢ — 1] and the core M[{];_,, obtained by the UcC instance invoked at time
l{—m

The mt-Cc protocol shown in Figure2lpresents the mt-Cc protocol for CC in OM (m,
t). It accepts m and t < n as parameters. We denote by M[k|s the core computed by
Ucc,(r) at time k. The message sending operations in the instances UCCy are sup-
pressed, replaced by the message u sent by mt-Cc. More formally, UCC; is an instance
of Ucc that is invoked at time s, in which only failures that occur from round s+ 1 on
are counted. It is initiated with no failure information. Incoming failure information for
Ucc; is simulated based on the incoming messages u, where only failures that occur in
rounds s+ 1...,s+m are taken into account. Similarly, maintaining the events in the
core is handled by mt-Cc. Based on the structure of UCC it is straightforward to show:

Lemma 5. Let @, ¢' € OM(m,t) be failure patterns, such that no process fails in the
first s rounds of ¢/, and the same channels are blocked in both patterns from round s+ 1
on. Let r be a run of UCCq with adversary (¢/,C), and let ¥ be a run with adversary
(¢,€) in which UCCy is invoked at time s. Then My[s + m|s = M'[s +m] for all x € P.

7 In fact, the UCC instance computes the subset of nodes of V[0, ¢] that determines its core, and
the core M[{];_,, consists of the events that occur at the nodes of this subset.
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mt-CcCy % Executed by x, on parameters m and ¢
0 M,[0] —0
1 invoke an instance of UcCC
for every round k > 1 do
send u = (failure-info,new-events) to all
s« max(0,k — m)
receive incoming messages;
simulate a round of Uccy,...,UCC;_1;
Mx[k] - (Mx[kf UM, [k]s)
invoke an instance of UCCy
endfor

~N N R W

Fig. 2. Process x’s computation in mt-CcC

The failure-info component of the message u on line 2 consists of a list of the
processes j that x knows have displayed faulty behavior in the last m rounds, and for
each such j the latest round number (mod m) in which x knows j to have been faulty.
In mt-Cc at most m instances of UCCy, need to be active at any given time. As we show
in the full paper, simple accounting mod m suffices for x to be able to construct the
incoming (simulated) messages for each active instance, based on the failure-info
components of incoming messages. The failure component in mt-CC message is thus of
size min{O(nlogm), O(| fi[k]| - lognm)} bits, where now f;[k] is the number of processes
known by i to have failed after round k — m. The new-events component in mt-CC
messages is the same as in a single instance of UCC in the standard sending omissions
model OM(eo,1).

While mt-Cc appears to be rather straightforward, the use of a uniform CC protocol
to construct it, and the way in which the results of the different instances are combined
is rather subtle. The real technical challenge, which brought about the new lower bound
techniques in Section [ is proving that it is optimal in all runs. We now consider the
properties of mt-Cc. Our first result is an upper bound, which is proved in Section Bl of
the appendix:

Lemma 6. The mt-CC(m,t) is a CC protocol for m > t. When m <t it satisfies Accu-
racy and Consistency.

Based on the lower bound in Section ] we then prove that mt-CC is optimal for m > .
Moreover, the results of Santoro and Widmayer can be used to show that no CC protocol
exists for m <t (this also easily follows from our lower bounds). Nevertheless, mt-CC
is optimal among the protocols that satisfy accuracy and consistency for m < t. The
optimality property implies that, essentially, mt-CcC is as complete as possible for m < ¢.

Being based on the cores computed by instances of UCC, the core at time ¢ in a run
of mt-Cc is the set of events that take place at a particular set 7 C V[0,¢]. Moreover,
since UCC; in OM(m, ) is equivalent to UCC in the standard sending omissions model
(by Lemmal[3)) the set A has the same structure as derived in the Moses and Tuttle con-
struction. Let ¢ denote the maximal time in nodes of 7. To prove that mt-Cc is optimal,
we show that all nodes that are at and after the critical time ¢ = ¢(@,¢) and are not in A
are covered. Formally, we apply Lemma ] to mt-Cc in the OM(im,¢) model to obtain:
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Lemma 7. Let r be a run of mt-CC(m,t) with failure pattern @, and assume that M|[()
is generated by the set of nodes A C V|[0,]. If ¢ is the maximal time of any node in A,
then S = (V[c,l]\ A) is covered by @ at L.

In the OM(m,t) model, if a process fails to deliver a message in round £, it is faulty.
Hence, all nodes of V[0,¢ — 1] that do not appear in the causal past of A belong to
faulty processes. We can use Lemma[7] to silence them at a reachable point using the
covered nodes in the same way as in the proof on Lemma[3l Once we do this, all nodes
from before time ¢ that do not appear in the view G®(A) are eliminated from the graph.
Formally, we can show:

Lemma 8. Let r be a run of mt-CC(m,t) and let £ and A be as in Lemma[Zl Then all
nodes in V[0, ]\ A are hidden by ¢ at ¢ in OM(m,1).

Lemma [8] provides the final ingredient for the optimality proof for mt-Cc: Lemma [@]
guarantees that mt-Cc solves continuous consensus. Lemmal/§] states that all nodes not
in the core view G®(A) of mt-Cc are hidden given the current failure pattern, for all
protocols. Theorem [ states that an event at a hidden node cannot be common knowl-
edge, which by Theorem/[Ilimplies that it cannot be contained in the common core under
any protocol whatsoever. It follows that, for each and every adversary all times ¢, the
core provided by mt-Cc is a superset of the core that any other correct CC protocol can
construct. We obtain:

Theorem 3. Let m >t > 0, and let A = OM(m,t) X E where E is independent. Then
mt-CC(m,t) is optimal in all runs in A.

We can also show that mt-Cc provides optimal behavior for m < ¢; it is accurate, con-
sistent and maximal. Indeed, for ¢t > m > 1, there are runs of mt-CC in which nontrivial
events enter the core. However, the completeness property is not achievable in some of
the runs. Using Lemmas 4] and 3] we can show:

Lemma 9. Ler 0 < m <t, and let A= OM(m,t) X E where Z is independent. Let r be
a run of a CC protocol with failure pattern @ € OM(m,t) in which no more than one
process fails per round in rounds 1, ... ,{. Then the core at time { is necessarily empty.

By Lemma[0] as well as from the results of Santoro and Widmayer in [IE], it follows that
Continuous consensus is not solvable in OM(m,¢) for 1 <m <. Lemma[Qlimplies that
if m =t = 1 then the core is necessarily empty at all times. However, whenever m > 1
there are runs in which the core is not empty. In these cases, Lemmal[6] guarantees that
mt-CcC is Accurate and Consistent. In fact, it is as close to a CC protocol as one could
hope for:

Theorem 4. For all m < t, the mt-CC protocol is optimal in all runs among the proto-
cols that satisfy the Accuracy and Consistency properties of CC.

6 Conclusions

Continuous consensus (CC) is a powerful primitive in synchronous distributed systems.
Being an ongoing activity, the classical 7-bounded failure model in which failures can
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only accumulate and recoveries are not considered is not satisfactory. This paper con-
siders the CC problem in an (m, ) omission failure model. mt-Cc, an efficient protocol
for CC in such models is presented, and is shown to be a optimal in all runs: It main-
tains the largest core at all times, in each and every run (i.e., against each behavior of
the adversary). We remark that while this paper focused on optimally fast CC protocols,
it is an interesting open problem how to trade speed against message complexity in CC
protocols.

The lower bound proof makes essential use of the theory of knowledge in distributed
systems. Using a new technique the lower bound manages to sidestep previous depen-
dence on the stability of faultiness in order to apply to models with failures and re-
coveries, such as the (m,#) omission model. It gives rise to a lower-bound construction
generalizing that of Moses and Tuttle ] in the standard sending omissions model.
The fact that mt-CcC is optimal in all runs proves that, in fact, the construction com-
pletely characterizes what is common knowledge (and what can appear in a CC core)
in OM(m,t). The new construction applies to monotone failure models in general. It
thus strictly generalizes the MT construction and applies to many other failure models,
including the elusive general omissions failure model (13] in which a faulty process can
fail to send and to receive messages. Models that bound the number of messages lost
are also monotone, as are ones in which there are different reliability guarantees for dif-
ferent subsets of the processes (say central servers vs. plain workstations). We believe
that a slight variation on this construction can be used to solve a twenty-year old open
problem regarding optimum simultaneous consensus in the general omissions model.
Finally, in future work we plan to show that, with slight modifications, the new lower
bound proof'is also applicable to topologies in which the communication network is not
a complete graph.
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A Lower Bound Proof

This section contains the proof of our central lower bound claim.

Proof of LemmaBl Letk, ¢, ¢, ¥, S and T = SU{(j,k)} satisfy the conditions of the
lemma. Since S is covered by @ at £, we have that (¢,£) = (¢/,£) where ¢’ agrees with
¢ on Sy, and in which all nodes of S are correct in . For ease of exposition we assume
w.l.o.g. that all nodes of S are correct in @.

Denote by ¢, the pattern that agrees with @ on V'\ {(j,k)}, where ¢, (j,k)=0(j, k) U
{1,...,m}. In particular, we vacuously have @y = ¢. Observe that ¢ C ¢,, C y holds
for all m. We prove by induction on m that (@,¢) ~ (@, £). The claim trivially holds
form = 0. Let m = h+ 1 > 0 and assume inductively that the claim holds for /. Thus,
(¢,0) =~ (@p,¢). By Lemma[Il it follows that S = V[k+ 1,/] is covered at @,. Denote
w= (h+1,k+1).Clearly, w € S. Let @, be a failure pattern such that (@, ) =~ (@, £),
G®(Sy) = G (§;), and h+ 1 is shut out in rounds k+ 1, ..., £ of @,,. Let ¢, be a failure
pattern that is obtained from @,, by dropping the edge ((j,k),(h+ 1,k+ 1)). We first
claim that @/, € ®. Denote by ¢ pattern that agrees with ¢ on 77, in which w is shut out
in round k+ 1, and A+ 1 is shut out in rounds k + 2 through ¢. The lemma’s statement
ensures that ¢ € ® for every pattern € @ that agrees with ¢ on 7j, in which (j, k) is
shut out (in round k + 1) and exactly one node is shut out in rounds k + 2 through /.
Since @], C ¢, we have by monotonicity of ® that @/, € ®, as claimed.

For every process i # h+ 1 we have that G (i, £) = G (i, ), since G®* and G%
differ only on the incoming edges of w = (h+ 1,k+ 1). Since i+ 1 is shut out from
time k + 1 to £, the node w appears neither in G®* (i, £) nor in G (i,¢). It follows that
(Qw,?) =~ (9),,). By transitivity of ~ we have that (¢,¢) ~ (¢/,,£), which by Lemmal[ll
implies that S is covered by ¢,. The pattern that agrees with @], on S in which the nodes
of S are correct is @, 1. The fact that S is covered by @/, at £ implies that (¢!, /) ~
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(®n41,¢), and again by transitivity of ~ we have that (¢, £) = (j1,£), completing the
inductive proof. We thus obtain that (@,¢) ~ (9,,¢). Moreover, since S is covered at ¢
by ¢, the pattern @, that is guaranteed with respect to @, by clause (a) of the definition
of hidden for u = (j,k+ 1) satisfies G®(S;) = G®(S/) and has j shut out in rounds
k+1,...,n. It follows that @, satisfies all three conditions (a), (b) and (c) necessary to
establish the first part of the definition of 7 = SU{(j,k)} being covered by ¢ at time ¢,
as required.

The second part of the proof that T is covered by ¢ at ¢ follows the same steps.
In this case, however, we define patterns ¢y, (j,k) = @(j,k) \ {1,...,m} and rather
than blocking edges from (j,k) in round k + 1, we incrementally add such edges. A
completely analogous inductive proof produces a pattern ' such that (¢,¢) ~ (', ¢),
GO(T)) = GY'(T;), and ¢/ (j, k) = 0. By Lemmal[Il we obtain that ' covers S at £. The
pattern @' guaranteed with respect to ' and S satisfies that (¢/,¢) ~ (W, ¢) =~ (¢,),
that G (T;) = GY (T;) = G®(T;), and that ¢/(j,k) = y/(j,k) = 0 and ¢'(v) = 0 for ev-
ery v € S. We thus have that ¢’ satisfies conditions (d), (¢) and (f) completing the proof
that 7 = SU{(j,k)} is covered by @ at time £. [ ]

B Upper Bound Proof

Proof of Lemmal@ In order to prove that mt-CcC is a CC protocol, we have to show
that Accuracy, Consistency and Completeness hold. We note that UCC satisfies these
properties, as shown in [[11]].

Initially, M,[0] = 0 and is thus vacuously accurate. By line 4 of mt-Cc, the core
M, [k + 1] is constructed by extending M,[k] with events from M,[k];, computed by
Ucc;. Since UcC; satisfies Accuracy, the resulting core Mx[k+ 1] is accurate, as re-
quired.

For Consistency, let r be the run of mt-Cc(m,r) with adversary (9,), let k > 1, and
let M, [k] denote the core computed by mt-Cc at time k in r. We proceed by induction on
k. For k = 0, by line 0 of mt-Cc we have M,[k] = M_[k] = 0. Now assume the inductive
hypothesis holds for k — 1, i.e., that M,[k — 1] = M,[k — 1]. By line 4 of mt-CC we
have M,[k] = M,k — 1] U M,[k];. By Lemma [5 we have that M,[k]; = M.[k],. Since
M, [k — 1] = M_[k — 1] by the inductive hypothesis, we have that M, [k — 1] UM,[k]; =
M_[k — 1]UM_[k],, and thus M,[k] = M_[k]. Thus, Consistency holds for mt-Cc.

Finally, for Completeness, recall that UCC(¢) guarantees that e € M[s + ¢ + 1] for
every event e € E that is known to a nonfaulty process j at time s. By Lemma[3] if m > ¢
then M, [s +m]; = M[s + m| where M., is obtained by UCC in a run v’ with adversary
(¢,C) as defined in that lemma. Since all messages delivered in r are delivered in 7/, it
follows that if j knows e at time s in r it knows e at j in r’ as well. Since e € M’[s+1 + 1]
and M[s+1t+ 1] C M, [s+ m], it follows by Lemmal[3lthat e € M,[s + m|;. By line 4 of
mt-CC we have that e € M, [s +m], as desired. ]
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